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1.1 Introduction
In the preliminary and conceptual stages of design, it is often helpful to

have tools that make some sacrifices in fidelity in favor of computational

efficiency. It may also be desirable to sacrifice some flexibility to further

decrease computation time costs in the beginning stages of design. To

this end, a low-fidelity tool for the evaluation of ducted propulsors,

catered specifically to electric ducted fans, is described in this document.

One of the major limitations in flexibility is that we require that:

Assumption 1.1

The system is modeled axisymmetrically.
Limitations: There are two major limitations to the axisymmetric

assumption: the first is that we can no longer model non-symmetric

inflow conditions. The second is that the internal flow, specifically

aft of the rotor(s) is assumed to be uniform in the tangential direction

(axisymmetric), removing any modeling of unsteady wake condi-

tions. An additional limitation comes in modeling flow near the

center line, where we will see that division by numbers approaching

zero can cause numerical issues.

Justification: By making the axisymmetric assumption, we are

able to utilize much faster computation methods, or at least faster

versions of already relatively fast methods. Specifically in our case,

we can use axisymmetric panel methods employing far less elements

than would be required for a three-dimensional method. Although

our operational cases are limited to axial inflow, there are still many

uses in that limited design space.

Therefore, we call our tool Ducted Axisymmetric Propulsor Evaluation,

or DuctAPE for short. We also required a steady-state assumption,

meaning the solution is stationary in time. As alluded to, the overall goal

of DuctAPE is to provide a computationally inexpensive tool to be used

1
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a
Thus the name potential flow theory

b
Due to the vector identity that for any

vector, 𝝓, the curl of the gradient of the

vector is zero: ∇ × ∇𝝓 = 0

in a multidisciplinary design and optimization setting for preliminary

and conceptual design.

In this document we cover the methodology derivation required for

DuctAPE as well as some implementation details and various verification

and validation along the way. The solver is comprised of two major

components, which will be first presented in isolation before the full

coupling is considered. The first that will be covered is the analysis of

the duct and center body (see section 1.2), and the second is the analysis

of the rotor and wake (see section 1.3).

1.2 No-rotor Solution: Axisymmetric Panel Method
One of the major pieces of the DuctAPE solver is an axisymmetric panel

method. The implementation for an axisymmetric panel method is

similar to the implementation of typical planar panel methods, but there

are a few differences. We include here details for the axisymmetric panel

method used.

1.2.1 Potential Flow Theory
Potential flow theory deals with the analysis of flow fields that can

be modeled as the gradient of scalar functions. In our case, we are

specifically interested in the scalar function called the velocity potential
a
,

𝝓, and its gradient: velocity, 𝑽 = ∇𝝓. Potential flows conform to

assumption 1.2 by definition
b
.

Assumption 1.2

The velocity field is irrotational, such that

𝝎 = ∇ × 𝑽 = 0

everywhere in the field except for the axes of free vortices.
Limitations: We cannot directly model viscous effects in the flow,

and later (in our wake model) we lose some fidelity by forcing an

irrotational interpretation of inherently rotational phenomena.

Justification: We will see shortly that this allows us to greatly

simplify the analysis to a linear system of equations, greatly reducing

the computational expense. At high enough Reynolds numbers, the

flow appears to be inviscid for large portions of the flow field as

well.

For our application, we also assume

Assumption 1.3

The velocity field is incompressible, such that

∇ · 𝑽 = 0.
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c
An irrotational flow is always inviscid,

but an inviscid flow is not necessarily ir-

rotational

d
In reality, flow is neither irrotational, nor

incompressible, but we find that in many

cases it is close enough that potential flow

theory provides a good approximation.

1 Fredholm, “Sur une classe d’équations

fonctionnelles,” 1903.

Limitations: We cannot model highly compressible flows.

Justification: For our application, we should not need to model

highly compressible flows, but we can later apply some compress-

ibility corrections (assuming that the flow is reasonably close to

incompressible).

From assumption 1.3 we see that

∇ · ∇𝝓 = ∇2𝝓 = 0, (1.1)

which is the Laplace equation. Along with the implication of assump-

tion 1.2 that our flow is inviscid
c
, the fact that the Laplace equation is a

linear operator is a major key to the reduction in required computational

expense for potential flow methods. Because the Laplace equation is a

linear operator, we can model relatively complicated flow features (such

as a duct and center body) using a superposition of elementary flows,

each satisfying the Laplace equation (for example point sources and

free vortices). The superposition of any number of elementary flows of

unknown strength can be assimilated into a single linear system of equa-

tions and solved directly. In our application, we are mostly concerned

with determining the strengths of elementary flows distributed along

imaginary boundaries we define based on useful shapes (such as the

surfaces of ducts and center bodies) that induce a potential flow field

that matches what we would see for an actual solid body in reality.
d

We call problems dealing with values on boundaries: boundary value

problems (for obvious reasons). A common way to approach the solution

of boundary value problem is with a boundary integral equation.

Boundary Integral Equation
For a given aerodynamic body, representable by a simply connected

contour (for example, 𝒮 as shown in figure 1.1) we want to be able

to find the velocity (and thereby pressure) distribution on that body

surface as well as its influence on the remainder of the flow field. One

way to find the surface velocity distribution is to leverage potential flow

theory. Using potential flow theory, we can construct a boundary integral

equation describing the influence of distributions of elementary flow

distributions along a give boundary. We can then use this boundary

integral equation to solve the boundary value problem for the unknown

surface velocity distribution. Fortunately, Erik Ivar Fredholm developed

a set of integral equations for application to boundary value problems
1
.

For our application, we will use a Fredholm integral equation of the

second kind:

𝑓 (𝑡) = 𝜗(𝑡) +
∮
𝒮
𝐾(𝑠, 𝑡)𝜑(𝑠)d𝑠. (1.2)

To understand what each term in equation (1.2) represents, we really

need to start with an understanding of the problem we are trying to

https://dx.doi.org/10.1007/BF02421317
https://dx.doi.org/10.1007/BF02421317
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𝑼∞ 𝒏̂

𝒮

𝒮∞

𝒱

Figure 1.1: An example of a simply connected contour, 𝒮, representing, in this case, an

airfoil. The dashed arrow represent the direction about which the contour is traversed,

with 𝒏̂ being the unit surface normal associated with the direction of travel.

e
Using the normal directed out of the

body, or into the space 𝒱 as depicted in

figure 1.1.

f
As opposed to a Dirichlet boundary con-

dition, which is typically applied directly

to the value of the potential on the bound-

ary.

solve. As mentioned, we would like to solve for the strengths associated

with elementary flow field distributions that induce a potential flow field

which matches our chosen geometry for a set of external flow conditions.

There are several ways to go about setting up a boundary value problem,

and we are going to choose to apply what is often termed the no flow

through condition. In other words, we are going to apply the boundary

condition that the velocity normal
e

to the body is zero. Because we are

applying a boundary condition on velocity, which is the gradient of the

velocity potential, we are applying what is called the Neumann boundary

condition.
f
We are now ready to start defining the terms in equation (1.2).

Starting with the integral term, which represents the influence of

a distribution of elementary flows along the boundary, we have the

kernel 𝐾 which in our case will be the expression for the unit induced

velocities of the surface segment, d𝑠, acting normal to the surface at point

𝑡. Mathematically, we can state this as

𝐾(𝑠, 𝑡) = 𝜕𝝓̂(𝑠, 𝑡)
𝜕𝒏̂𝑡

= ∇𝝓̂(𝑠, 𝑡) · 𝒏̂(𝑡)
= 𝑽̂ (𝑠, 𝑡) · 𝒏̂(𝑡).

(1.3)

where 𝝓̂ is the unit velocity potential, 𝑽̂ is the unit velocity, and 𝒏̂ is the

unit normal to the surface. The other term in the integrand, 𝜑(𝑠) is the

distribution of strengths of elementary flows along the boundary. We



DuctAPE Theory 5

2 Lewis, Vortex Element Methods for Fluid
Dynamic Analysis of Engineering Systems,
1991.

3 Martensen, “Die Berechnung der

Druckverteilung an dicken Gitterprofilen

mit Hilfe von Fredholmschen

Integralgleichungen zweiter Art,” 1959.

4 Courant et al., Methods of Mathematical
Physics, 1962.

g
Remember that we want the total normal

velocity at the boundary to be zero, so

adding this term to both sides should give

us zero.

h
Note that a uniform flow is another of the

elementary flows satisfying the Laplace

equation.

will choose to use free vortices as our elementary flows and we represent

their strengths with the symbol 𝛾.

The other term on the right hand side, 𝜗(𝑡) represents the jump in

velocity across the boundary. It can be shown that the jump in tangential

velocity associated with a vortex distribution along the boundary is

𝜗(𝑡) = −𝛾/2.
2–4

And for the orthogonal case of the normal velocity

(which we are concerned with at this point), the jump term is zero.

Lastly, the term on the left hand side, 𝑓 (𝑡) represents any externally

induced velocity in the negative normal direction
g

on the boundary

at point 𝑡. The typical externally induced velocity is due to (but not

limited to) a uniform free stream.
h

Mathematically we state the externally

induced velocity as

𝜑(𝑡) = 𝜕𝝓∞
𝜕𝒏̂𝑡

= ∇𝝓∞ · 𝒏̂(𝑡)
= 𝑽∞ · 𝒏̂(𝑡).

(1.4)

All together our Fredholm integral equation of the second kind,

applied to the Neumann problem for an unknown distribution of free

vortices along a chosen boundary is

∮
𝒮
𝛾(𝑠)𝜕𝝓̂(𝑠, 𝑡)

𝜕𝒏̂
d𝑠 = −𝜕𝝓∞

𝜕𝒏̂
(1.5a)

– or –∮
𝒮
𝛾(𝑠)𝑽̂ (𝑠, 𝑡) · 𝒏̂d𝑠 = −𝑽∞ · 𝒏̂. (1.5b)

We now have a boundary integral equation that we want to use to

solve for the unknown distribution of vortex strengths, 𝛾(𝑠). As we will

see, we will apply this equation at various points, 𝑡, along the boundary

simultaneously to form a system of equations for which to solve for 𝛾(𝑠).

1.2.2 The Panel Method: A Numerical Approach to Solving
Boundary Integral Equations

Solving the boundary integral equation over an entire boundary all at

once is not, in general, a tractable approach. Instead, we approximate

the boundary as a series of segments and sum the integrals over those

individual segments. We often approximate the boundary as a polygon,

discretizing the boundary using flat segments over which the surface

integral is simplified. For two- and general three-dimensional geometries,

these flat segments are often referred to as panels, thus the name “panel

method.”

In panel methods, we also do not apply the no through flow condition

everywhere in the boundary, but rather at a set of control points along

the boundary. We choose to place one control point at the center of each

panel. We can therefore assemble a system of integral equations for each

https://books.google.com/books?vid=ISBN9780521360104
https://books.google.com/books?vid=ISBN9780521360104


DuctAPE Theory 6

of the control points, summing the integral of the influence of all the

panels on each control point and use that system of equations to solve

for the unknown vortex strength distribution required to match the flow

field to our prescribed geometry. In order to set up a system of equations,

we first need to discretize the boundary into panels.

Discretizing bodies into panels
Assumption 1.4

Smooth bodies can be reasonably represented by a discrete number of flat
panels.
Limitations: By approximating the geometry as a polygon, rather

than a single continuous curve, we lose some accuracy in our

computation.

Justification: As mentioned, it is much easier to solve the problem

through the sum of individual components of the boundary, and

especially if we simplify those sections into pieces over which the

integral is simpler to solve. In addition, with a sufficient number

of panels, we obtain a close approximation of the body curvature

and therefore the solution of the continuous integral over the entire

boundary.

The bodies which we would like to model in our application are

axisymmetric bodies of revolution (such as the center body) and annular

airfoils (such as the duct comprised of a casing and nacelle) of an

electric ducted fan. According to assumptions 1.1 and 1.4 we can

model the geometry as axisymmetric bands, as shown in figure 1.2(a).

Furthermore, as shown in section 1.2.4, we may reduce the geometry

for analysis to two dimensions without loss of generality after applying

axisymmetry, modeling the geometry with representative cross sections

in the 𝑟-𝑧 plane in cylindrical coordinates.The discretized boundary in

our implementation then takes the form of 2D panels (representing the

axisymmetric bands). Figure 1.2(a) shows what is intended by a flat,

axisymmetric band, and figure 1.2(b) shows the panel representation of

said band.

One of the convenient traits of a panel method is that we simply

need to know the geometry and relative position of each of the panels to

calculate the unit induced velocities presented in section 1.2.4. As an

overview of the panel geometry we need to know, we refer to figure 1.2

in which we see a panel defined from the point, 𝒑 𝑗 , to the point, 𝒑 𝑗+1. We

take the midpoint of the panel to be 𝒑 𝑗 = (𝒑 𝑗 + 𝒑 𝑗+1)/2; and we define the

unit normal, 𝒏̂ 𝑗 , as shown in figure 1.2(b), such that 𝒏̂ 𝑗 = 𝒆̂𝜃 × 𝒕 𝑗 , where

𝒆̂𝜃 is the unit vector tangent to the vortex band in the positive 𝜃-direction

according to the right hand rule, and 𝒕 𝑗 is the unit tangent to the panel

from 𝒑 𝑗 to 𝒑 𝑗+1 such that 𝒕 𝑗 = (𝒑 𝑗+1 − 𝒑 𝑗)/||𝒑 𝑗+1 − 𝒑 𝑗||. In other words, we

will assume that the discretized panels are defined such that increasing

panel indices lead to the curve being traversed in a clockwise direction.
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𝒆̂𝑧𝒆̂𝑟

𝒆̂𝜃

(a) Axisymmetric Band Coordinate Sys-

tem.

𝒑 𝑗

𝒑 𝑗+1

𝒕 𝑗

𝒏̂ 𝑗

𝛾𝑗

𝛾𝑗+1

𝒑 𝑗

𝒆̂𝜃

𝒆̂𝑟
𝒆̂𝑧

(b) Panel representing axisymmetric

band; 𝒆̂𝜃 out of the page.

Figure 1.2: Axisymmetric band and panel geometry definitions.

i
Note that the 𝑖th control point here is

synonymous with the point represented

by the variable 𝑡 in equation (1.5).

Applying boundary conditions
As discussed in section 1.2.1, we are trying to solve the boundary value

problem using the Neumann boundary conditions. As mentioned, we

will apply this boundary condition at the control points placed at the

center of each panel (𝒑 in figure 1.2(b)). Since the boundary condition

states that the normal velocity, due to all contributions, is zero at the

control points, we also need to include the freestream contribution to

our boundary condition. Putting the surface influence and freestream in-

fluences together, we can, for the 𝑖th control point, state our approximate

boundary integral equation as

𝑁∑
𝑗=1

[
𝑲𝑖 𝑗 · 𝒏̂𝑖

]
+ 𝑽∞ · 𝒏̂𝑖 = 0, (1.6)

Though we often put the freestream component on the right hand side

for convenience, leaving us with

𝑁∑
𝑗=1

𝑲𝑖 𝑗 · 𝒏̂𝑖 = −𝑽∞ · 𝒏̂𝑖 (1.7)

where 𝑲 is comprised of what the induced velocity on the 𝑖th control

point
i
due to the 𝑗th segment of the surface (the 𝑗th panel in our case),

calculated from the integral term found in our boundary integral equation,

equation (1.5).It is the set of equation (1.7) for each of the control points

that will comprise the bulk of our system of equations.

Calculating Panel Induced Velocities
In order to calculate the panel induced velocities, we want to discretize

the vortex distribution along the boundary in a similar fashion to our

discretization of the geometry above. In fact, as mentioned, we will

split the integral of our boundary integral equation into segments—

integrating over each panel. Along each panel then, we need to define



DuctAPE Theory 8

j
Specifically, as mentioned by Katz and

Plotkin, discrete distributions are “inade-

quate near the stagnation points of a thick

airfoil,” and in practice are used for zero

thickness airfoils rather than for closed

surfaces. Additionally, constant vortex

distributions introduce several issues also

discussed by Katz and Plotkin that are

solved by moving to a linear distribution

scheme.

5 Katz et al., Low speed aerodynamics, 2001.

a distribution of vortex strengths. There are several options for how

we might choose to discretize the vortex distributions along each panel.

For example, we may choose to not distribute the strengths and simply

use discrete ring vortices along the boundary. Alternatively, we may

select the strength of the distribution to be constant along each panel.

We may instead select the strength of the distribution to vary linearly

along each panel. We could even choose a higher order distribution.

For our use case, we will select a linear distribution scheme along each

panel, with the panel end points acting as “nodes” between which we

will integrate. Discretizing the vorticity distribution along the surface

into linear segments then gives us an unknown vorticity magnitude, 𝛾𝑗 ,
at each panel endpoint (node).

We choose a linear distribution along each panel primarily because

discrete distributions and constant distributions have or introduce issues
j

that are solved by moving to a linear distribution
5
. An added benefit is

that a linear distribution allows a more accurate solution for a coarser

discretization of the geometry than constant strength panels do. We

choose not to utilize a higher order method mainly due to the difficulty

of integrating our axisymmetric kernel (presented in ??).

Because the surface integrals of velocities induced by axisymmetric

vortex rings are exceptionally difficult to solve analytically, we will

take a numerical approach. In general, quadrature is the process of

approximating an integral of a function using a sum of weighted samples

of the function: ∫ 𝑏

𝑎

𝑓 (𝑥)d𝑥 ≈
𝑁∑
𝑘

𝑤𝑘 𝑓 (𝑥𝑘), (1.8)

where the main task of the setup is to decide where along the integration

interval to place the sample points, 𝑥𝑘 , and what weights, 𝑤𝑘 , to apply to

those samples.

In the nominal case when a panel induces velocity on the surface, but

not on itself, we set things up as follows for a given panel and surface

point, 𝑡: We start with the portion of the surface integral associated with

the 𝑗th panel ∫ 𝒑 𝑗+1

𝒑 𝑗
𝛾(𝑠)𝜕𝝓̂(𝑠, 𝑡)

𝜕𝒏̂𝑡
d𝑠. (1.9)

Because the unit normal applies at 𝑡, it is a constant in this integral. As

such, we can express the integral in terms of the integration of velocities

only, which are then multiplied by the components of the normal vector

after integration.

https://books.google.com/books?vid=ISBN0521662192; 9780521662192; 0521665523; 9780521665520
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k
This is made possible due to the linear

vortex distribution along a flat panel.

𝛾𝑗

0

𝛾𝑗+1

1

𝜉𝑘 1 − 𝜉𝑘

𝑤𝑘 𝑓 (𝑠(𝜉𝑘 ))
♦

Δ𝑠

Figure 1.3: Visual representation of

splitting the integral into the portions

for each panel node.

𝒗𝑡 𝑗 =
∫ 𝒑 𝑗+1

𝒑 𝑗
𝛾(𝑠)𝜕𝝓̂(𝑠, 𝑡)

𝜕𝒏̂𝑡
d𝑠

=

( ∫ 𝒑 𝑗+1

𝒑 𝑗
𝛾(𝑠)∇𝝓̂(𝑠, 𝑡)d𝑠

)
· 𝒏̂𝑡

=

( ∫ 𝒑 𝑗+1

𝒑 𝑗
𝛾(𝑠)𝑽̂ (𝑠, 𝑡)d𝑠

)
· 𝒏̂𝑡 .

(1.10)

To get the integral in terms of components of velocity, we can split up

the integral into its components

𝑣𝑧𝑡 𝑗 =

(∫ 𝒑 𝑗+1

𝒑 𝑗
𝛾(𝑠)𝑣𝑧(𝑠, 𝑡)d𝑠

)
𝑛𝑖𝑧 , (1.11a)

𝑣𝑟𝑡 𝑗 =

(∫ 𝒑 𝑗+1

𝒑 𝑗
𝛾(𝑠)𝑣𝑟(𝑠, 𝑡)d𝑠

)
𝑛𝑖𝑟 . (1.11b)

Since we are working toward assembling a system of equations, and

we have introduced the unknown vortex magnitudes, 𝛾𝑗 , which define

the vorticity distribution along the boundary, we need to obtain the

integrals over the panels in terms of each of the panel node strengths (𝛾𝑗).
As we perform our numerical integration, the quadrature procedure

selects sample points along the range of integration as already mentioned.

To make things easier to implement, we will transform our integrals such

that the integrator will integrate on the range (0,1) and we will introduce

the transformed variable 𝜁 as the variable of integration.

𝑣𝑧𝑡 𝑗 =

(
Δ𝑠

∫
1

0

𝛾(𝑠(𝜁))𝑣𝑧(𝑠(𝜁), 𝑡)d𝜁
)
𝑛𝑖𝑧 , (1.12a)

𝑣𝑟𝑡 𝑗 =

(
Δ𝑠

∫
1

0

𝛾(𝑠(𝜁))𝑣𝑟(𝑠(𝜁), 𝑡)d𝜁
)
𝑛𝑖𝑟 . (1.12b)

where Δ𝑠 is the length of the range of integration, or panel length.

Referencing figure 1.3, we see that the quadrature function samples

can be split into the influences of each of the panel nodes by a simple

geometric weighting:
k

𝑓𝑗(𝑥𝑘) = 𝑤𝑘 𝑓 (𝑠(𝜁𝑘), 𝑡) (1 − 𝜁𝑘) due to 𝛾𝑗 (1.13a)

𝑓𝑗+1(𝑥𝑘) = 𝑤𝑘 𝑓 (𝑠(𝜁𝑘), 𝑡) 𝜁𝑘 due to 𝛾𝑗+1. (1.13b)

In other words, we return a piece of the integral weighted according to

the sample point location along the range of integration. Because we

transformed the range of integration to (0,1), we can simply take these

geometrically proportional weights to be 1 − 𝜁 and 𝜁 where 𝜁 ∈ (0, 1) for

the 𝑗th and (𝑗 + 1)th nodes, respectively. Note that the 𝛾𝑗 values are also
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l
Note that the sample points associated

with the Gauss-Legendre polynomials do

not actually sample the integration range

at its endpoints.

constant relative to 𝜁 and are therefore not included in the integrand

expressions of equation (1.13). This allows us to pull out all of the 𝛾𝑗
terms which are the unknowns for which we want to solve using the

system of equations we are assembling. All together, the unit velocities

normal to the 𝑖th panel, induced by the 𝑗th panel (defined by the 𝑗th and

(𝑗 + 1)th nodes), or what we term the influence coefficients, 𝐼𝐶, are

𝐼𝐶𝑖 𝑗 =

(
Δ𝑠 𝑗

𝑁∑
𝑘

𝑤𝑘𝑣𝑧(𝑠(𝜁𝑘), 𝑡)(1 − 𝜁𝑘)
)
𝑛𝑖𝑧 +

(
Δ𝑠 𝑗

𝑁∑
𝑘

𝑤𝑘𝑣𝑟(𝑠(𝜁𝑘), 𝑡)(1 − 𝜁𝑘)
)
𝑛𝑖𝑟

𝐼𝐶𝑖(𝑗+1) =

(
Δ𝑠 𝑗

𝑁∑
𝑘

𝑤𝑘𝑣𝑧(𝑠(𝜁𝑘), 𝑡)𝜁𝑘

)
𝑛𝑖𝑧 +

(
Δ𝑠 𝑗

𝑁∑
𝑘

𝑤𝑘𝑣𝑟(𝑠(𝜁𝑘), 𝑡)𝜁𝑘

)
𝑛𝑖𝑟 ,

(1.14)

for the 𝑗th and (𝑗 + 1)th nodes, respectively.

In the singular case, where the panel induces velocity on itself, more

consideration is required. We first need to remember that we chose the

midpoint of each panel to be the control point. Because the expression

for induced velocity is singular when the distance between the point of

influence and the point being influenced is zero, there is a singularity

at the panel midpoint of a panel inducing velocity on its own control

point. Knowing beforehand exactly where the singularity lies makes

things somewhat easier to approach, but we still need to address the

singularity. We will take a separation of singularity approach to calculate

the self-induced case. The separation of singularity method is, in brief, to

subtract out the singular piece of the integral while solving the integral,

then afterward adding back in the singular piece solved analytically to

avoid the computational issues associated with the computer attempting

to divide by zero. Basically, as the integral tends to positive and negative

infinity on either side of the singular point, we cancel out the non-

convergent values on either side of the singular point and replace them

with an analytic approximation. Mathematically we have the integral

𝒗 𝑗 𝑗 =
∫ 𝒑 𝑗+1

𝒑 𝑗
𝛾(𝑠)𝐼(𝑠)d𝑠, (1.15)

where

𝐼(𝑠) =
𝜕𝝓̂(𝑠, 𝒑 𝑗)

𝜕𝒏̂ 𝑗

We need to subtract off the singular part, 𝑆, (inside the integral), and

then add back an analytical expression, 𝐴, for the integral of subtracted

singular part (outside the integral). The other thing we need to do is

to tell the quadrature package where the singular point is so that it can

avoid placing sample points right on the singularity. Under the hood,

the quadrature package actually splits the integral into two, integrating

from the start of the integration range to the singular point, then from

the singular point to the end of the integration range.
l
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m
Details for how the singular and analytic

expressions are derived are provided in

1.B.

𝒗 𝑗 𝑗 =
∫ 𝒑 𝑗+1

𝒑 𝑗
𝛾(𝜁)(

(
𝐼(𝑠(𝜁), 𝒑 𝑗) − 𝑆(𝑠(𝜁), 𝒑 𝑗)

)
d𝜁 + 𝛾𝐴(𝒑 𝑗). (1.16)

After these modifications to account for the singularity, the procedure

for applying the quadrature is the same as before giving us the influence

coefficients for the panel on itself to be

𝐼𝐶𝑖𝑖 =Δ𝑠𝑖

(
𝑁∑
𝑘

𝑤𝑘

[ (
𝑣𝑧(𝑠(𝜁𝑘), 𝒑𝑖)

)
(1 − 𝜁𝑘) −

1

2

𝑆𝑧(𝑠(𝜁𝑘), 𝒑𝑖)
]
+ 1

2

𝐴𝑧(𝒑𝑖)
)
𝑛𝑖𝑧

+ Δ𝑠𝑖

(
𝑁∑
𝑘

𝑤𝑘

[ (
𝑣𝑟(𝑠(𝜁𝑘), 𝒑𝑖)

)
(1 − 𝜁𝑘) −

1

2

𝑆𝑟(𝑠(𝜁𝑘), 𝒑𝑖)
]
+ 1

2

𝐴𝑟(𝒑𝑖)
)
𝑛𝑖𝑟

𝐼𝐶𝑖(𝑖+1) =Δ𝑠𝑖

(
𝑁∑
𝑘

𝑤𝑘

[ (
𝑣𝑧(𝑠(𝜁𝑘), 𝒑𝑖)

)
𝜁 − 1

2

𝑆𝑧(𝑠(𝜁𝑘), 𝒑𝑖)
]
+ 1

2

𝐴𝑧(𝒑𝑖)
)
𝑛𝑖𝑧

+ Δ𝑠𝑖

(
𝑁∑
𝑘

𝑤𝑘

[ (
𝑣𝑟(𝑠(𝜁𝑘), 𝒑𝑖)

)
𝜁 − 1

2

𝑆𝑟(𝑠(𝜁𝑘), 𝒑𝑖)
]
+ 1

2

𝐴𝑟(𝒑𝑖)
)
𝑛𝑖𝑟

(1.17)

where
m

𝑆𝑧(𝒑𝑜 , 𝒑) =
𝑟𝑜 − 𝑟

2𝜋
[
(𝑧 − 𝑧𝑜)2 + (𝑟 − 𝑟𝑜)2

] − 1

8𝜋𝑟𝑜

[
ln

(
(𝑧 − 𝑧𝑜)2 + (𝑟 − 𝑟𝑜)2

64𝑟2

𝑜

)]
𝑆𝑟(𝒑𝑜 , 𝒑) =

𝑧 − 𝑧𝑜
2𝜋

[
(𝑧 − 𝑧𝑜)2 + (𝑟 − 𝑟𝑜)2

] ,
(1.18)

and

𝐴𝑧(𝒑) =
1

4𝜋𝑟

(
1 + ln

8𝑟

Δ𝑠

)
𝐴𝑟(𝒑) =0;

(1.19)

and the multiplication by 1/2 on the singular and analytic terms is due

to the fact that the singular point is half way between the nodes, so each

node is responsible for exactly half of the influence.

Assembling the linear system
To find the strengths of each vortex node that result in a vortex distribution

inducing a flow field matching our prescribed body geometry, we need

to assemble a system composed of equation (1.7) for each panel. Note,

however, that currently our expression for 𝑲 is indexed according to

panel, and contains information about more than one panel node, which

we need to remedy in order to get expressions for the individual strengths

at each node. This is precisely why we separated out the node influences
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n
Note that for a sharp trailing edge,

where the nodes are coincident, they re-

ally should be equal anyway since they

occupy the same point in space.

o
We will discuss shortly the case where

the center body has a sharp trailing edge.

in the previous subsection. Thus each node has a component of influences

associated with each panel to which it is an edge point. For the 𝑗th node

then, we can add the contributions due to the (𝑗 − 1)th and 𝑗th panels

for which it is an edge point. This allows us to assemble the influence

coefficient matrix based on a node-control point scheme rather than a

panel-control point scheme:

𝑮𝑖 𝑗 =

{
𝐼𝐶𝑖 𝑗 for 𝑗 = 1, 𝑁 + 1

𝐼𝐶𝑖 𝑗 + 𝐼𝐶𝑖(𝑗−1) for 2 ≤ 𝑗 ≤ 𝑁
(1.20)

where 𝑮 is the 𝑁 × 𝑁 + 1 matrix whose elements, 𝑮𝑖 𝑗 , are the influence

coefficients of the 𝑗th node (𝑁 + 1 total) on the 𝑖th control point (𝑁

total); and the influence components, 𝐼𝐶, are defined in equations (1.14)

and (1.17) for the nominal and self-induced cases, respectively. Since 𝑮
is not square, as it has one more unknown than boundary conditions,

we cannot solve the system directly as is. Fortunately, we also require an

additional condition to make things work.

The Kutta Condition
One of the shortcomings of using potential flow theory is that by itself, it

lacks inherent mechanisms for ensuring the flow leaves the surface of

lifting bodies at the correct location and in the correct direction. One

solution to this problem is known as the Kutta condition, which can be

stated in several equivalent ways. However it is be stated, the Kutta

condition requires the flow over a lifting body with a sharp trailing edge

to leave the body at the trailing edge in a manner roughly tangent to the

trailing edge. Therefore we can artificially enforce conditions that are

observed in real, viscous flows at relatively low angles of attack. Just as

there are several equivalent ways to state the Kutta condition, there are

several ways that the Kutta condition may be implemented. One method

is to require zero circulation at the trailing edge. We can enforce this by

setting the strengths of the first and last panel nodes to be equal
n

and

opposite such that

𝛾1 + 𝛾𝑁 = 0. (1.21)

In order to make our system square, we simply add the Kutta condition

as the 𝑁 + 1th equation.

By itself, this version of the Kutta condition can lead to spurious

spikes in surface velocity near the trailing edge. In order increase the

numerical robustness of the panel method, we apply an additional,

indirect Kutta condition by placing an additional control point just inside

the interior of the duct trailing edge and define an associated unit normal

oriented such that the unit normal is effectively in the direction of the

bisection angle of the trailing edge panels. We also place an additional

control point inside the center body if it has a blunt trailing edge.
o

We apply the same boundary condition on these control point as the

other control points in that we set the normal velocity induced by the
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freestream to be equal and opposite to the tangential velocity induced by

the body boundaries on the control point.

𝑁+1∑
𝑗=1

𝛾𝑗𝑮�𝑘 𝑗 = −𝑽∞ · 𝒏̂𝑘 . (1.22)

where the elements of 𝑮� are the expressions defined in equation (1.14).

Upon the addition of this equation, however, we find ourselves with

insufficient unknowns (one for each body being modeled). To remedy

this insufficiency, we simply apply a dummy strength, 𝜏𝑘 , for the 𝑘th

body and set all of its associated influence coefficients, 𝒯 , to 1 for the

panels of the body it is applied to and zero elsewhere (including itself).

𝒯𝑖𝑘 =
{

1 if 𝑖 = 𝑘

0 otherwise

(1.23)

We mentioned placing the additional control point just inside the

trailing edge. This is done (rather than right at the middle of the trailing

edge gap between the trailing edge nodes) to avoid numerical issues if

the trailing edge is indeed sharp. We specifically place the node along

the line bisecting the trailing edge angle and passing through the point

halfway between the trailing edge nodes. The position is calculated as

follows

𝑧𝑐𝑝 = 𝑧𝑇𝐸 − 𝜖Δ𝑠𝑇𝐸
𝑧diff

𝑠diff

(1.24a)

𝑟𝑐𝑝 = 𝑟𝑇𝐸 − 𝜖Δ𝑠𝑇𝐸
𝑟diff

𝑠diff

(1.24b)

𝑛̂𝑧𝑐𝑝 =
𝑧diff

𝑠diff

(1.24c)

𝑛̂𝑟𝑐𝑝 =
𝑟diff

𝑠diff

(1.24d)

where

𝜖 = 0.05 (1.25)

𝑧𝑇𝐸 =
𝑧1 + 𝑧𝑁+1

2

(1.26)

𝑟𝑇𝐸 =
𝑟1 + 𝑟𝑁+1

2

(1.27)

Δ𝑠𝑇𝐸 =
Δ𝑠1 + Δ𝑠𝑁

2

(1.28)

𝑧diff = Δ𝑧𝑁 − Δ𝑧1 (1.29)

𝑟diff = Δ𝑟𝑁 − Δ𝑟1 (1.30)

𝑠diff =
[
𝑧2

diff
+ 𝑟2

diff

]
1/2

(1.31)

where the Δ(·) lengths are calculated in the clockwise direction as before,

and 𝜖 is chosen for generally good numerical behavior.
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(𝑧, 𝑟)𝑇𝐸

Δ𝑠1
𝜖Δ𝑠𝑇𝐸

𝑟diff

𝑧diff

Δ𝑠𝑁

(𝑧, 𝑟)𝑐𝑝

Figure 1.4: Geometric explanation of internal control point placement.

6 Drela, “XFOIL: An Analysis and

Design System for Low Reynolds

Number Airfoils,” 1989.

7 Fidkowski, “A Coupled

Inviscid–Viscous Airfoil Analysis Solver,

Revisited,” 2022.

p
We are effectively defining a constant

strength source panel in this case.

Additional Considerations for Open Bodies
The Kutta condition we have applied assumes that the trailing edge is

both sharp and thin. This approximation tends to be relatively good

for a large variety of geometries, and is well behaved numerically, but

eventually breaks down. Specifically in the case of blunt trailing edges,

when the trailing edge panel nodes are not coincident, the flow field

can tend to flow into the inside of the body through the open trailing

edge. To prevent this, we will add a trailing edge panel with distribution

strengths determined from the adjacent panels, similar to the method

used by XFOIL
6,7

for blunt trailing edges.

For any trailing edge panel, we will set a vortex and source distribution

along the panel based on its orientation to the adjacent panels and the

distribution strengths at the shared node locations:

𝛾𝑇𝐸𝑗 =
(
𝒏̂𝑇𝐸𝑗 · 𝒏̂adj𝑗

)
𝛾adj𝑗

(1.32)

𝜎𝑇𝐸𝑗 = −
���𝒏̂𝑇𝐸𝑗 × 𝒏̂adj𝑗

��� 𝛾adj𝑗
. (1.33)

where the “adj” subscript indicates the adjacent panel. Based on these

definitions of strength distributions across the trailing edge panels, we

can take the unit strengths (relative to the unknown distribution strengths

on the shared nodes) to be

𝛾̂𝑇𝐸𝑗 = 𝒏̂𝑇𝐸𝑗 · 𝒏̂adj𝑗
(1.34)

𝜎̂𝑇𝐸𝑗 = −
���𝒏̂𝑇𝐸𝑗 × 𝒏̂adj𝑗

��� . (1.35)

For trailing edge panels which have a node on the axis of rotation, for

example, in the case of a center body with a blunt trailing edge, we set

the strength (𝛾𝑇𝐸𝑗 ) and derivative (𝜕𝛾𝑇𝐸𝑗/𝜕𝛾) of the vortex distribution at

the axis to zero. Since we do not have an adjacent panel on the axis side

of such a trailing edge panel, we will simply use the same adjacent panel

to calculate values for both source nodes of the trailing edge panel.
p

To add the trailing edge panels to the linear system we do not want

to add any more equations, because we have defined the trailing edge

panel strengths according to unknowns we already have in the system.

https://books.google.com/books?vid=ISBN978-3-642-84010-4
https://books.google.com/books?vid=ISBN978-3-642-84010-4
https://books.google.com/books?vid=ISBN978-3-642-84010-4
https://dx.doi.org/10.2514/1.J061341
https://dx.doi.org/10.2514/1.J061341
https://dx.doi.org/10.2514/1.J061341
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q
Exchanging the vortex ring induced unit

velocities for those induced by source

rings for the source terms in equa-

tion (1.37).

As such, we simply need to augment the influence coefficients for the

panels adjacent to the trailing edge panels, since all the trailing edge

panel information comes directly from those adjacent panels. For each

panel with a node bordering a trailing edge panel, we add the following

to the unit induced velocity on every control point

𝑽̂ 𝛾
𝑖𝑇𝐸 𝑗

+
= 𝑽̂ 𝛾

𝑖𝑇𝐸𝑗
𝛾̂𝑇𝐸𝑗 + 𝑽̂ 𝜎

𝑖𝑇𝐸𝑗
𝜎̂𝑇𝐸𝑗 . (1.36)

In other words, we add the unit induced velocity associated with the

trailing edge node to the panel sharing that node scaled by how aligned

the trailing edge and adjacent panel are. As an example, if the duct had

a blunt trailing edge, we would define a trailing edge panel spanning the

gap from the first to the last node in the airfoil geoemetry. We would

then define the strengths and changes in strength relative to the first and

last panels of the geometry (those at the trailing edge). Finally, we would

augment the unit induced velocity due to the first and last nodes by the

above expressions for the trailing edge gap panel we defined. We can

apply this to the velocity directly, or we can simply add the velocities

dotted with the control point normal vectors to the influence coefficient

matrix after the fact.

𝑮𝑖 𝑗
+
=

[
𝑽̂ 𝛾
𝑖𝑇𝐸𝑗

𝛾̂𝑇𝐸𝑗 + 𝑽̂ 𝜎
𝑖𝑇𝐸𝑗

𝜎̂𝑇𝐸𝑗

]
· 𝒏̂𝑖 , (1.37)

where the 𝑗th components of unit induced velocity, 𝑽̂ , are calculated

from equation (1.14).
q

Additional Considerations for Nodes on the Axis of Revolution
As we have already discussed, annular airfoils with non-zero cambered

cross-sections require the addition of a Kutta condition. Bodies of

revolution do not require such a condition in an axisymmetric scheme,

but rather have other unique features to consider. Specifically, bodies

of revolution will have a panel node on the axis of revolution (at the

leading edge). As we will see in the definition of unit induced velocity

(equation (1.88)), if an influence point lies on the axis, that is if 𝑟𝑜 = 0, then

the induced velocity becomes infinite. In reality, the induced velocity

from such a point is zero. Therefore in our system, we will need to

prescribe the strengths of panel nodes on the axis of rotation to be zero

strength. In order to achieve this, we take an approach similar to applying

the Kutta condition: we simply add the equation

𝛾𝑐𝑏𝐿𝐸 = 0 (1.38)

to the system, where 𝛾𝑐𝑏
𝐿𝐸

is the prescribed node strength for the center

body leading edge. This additional equation also solves the issue of the

matrix not being square due to there still being 𝑁 + 1 nodes and only

𝑁 panels for a body of revolution. If the center body trailing edge is

sharp, then we have an additional node on the axis of rotation and also
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need to prescribe its strength to zero. As it turns out, we do not actually

need the additional internal control point for bodies of revolution, but it

doesn’t hurt us to have it implemented. In the case of a closed trailing

edge, we will effectively remove the internal control point and substitute

its equation with an equation prescribing the trailing edge node strength

to be zero like the leading edge node:

𝛾𝑐𝑏𝑇𝐸 = 0. (1.39)

Since we still have an additional equation, we will keep the dummy

variable in place simply to keep the system square.

Solving the linear system
To avoid confusion, we will let 𝑮∗

represent the influence matrix aug-

mented by the Kutta condition, additional trailing edge control point

equations, and any prescribed node equations. Because the overall cou-

pled solver in DuctAPE will need to solve the linear system for the panel

method many times, it is advantageous to do as much precomputation

as possible for the panel method. The first thing that we will note is

that the body geometry will not change throughout the coupled solve.

This means that the influence matrix 𝑮∗
can be fully precomputed and

stored. Due to this fact, we can also speed up the multiple linear solves

by performing a Lower-Upper (LU) decomposition of 𝑮∗
such that

𝑮∗ = 𝑳𝑼 (1.40)

where 𝑳 and 𝑼 are the lower and upper triangular matrices of the LU

decomposition. By precomputing the LU decomposition, we can speed

up the solution process of the linear system, which can now be expressed

as

𝑳𝑼𝜸 = 𝒃 (1.41)

where 𝒃 = (−𝑽∞ · 𝑛̂). We can solve this system through the forward and

backward substitution in two steps:

1. Solve 𝑳𝒚 = 𝒃 for 𝒚.

2. Solve 𝑼𝜸 = 𝒚 for 𝜸.

Although this is a two-step process, it ends up being numerically more

efficient than a more direct system solve method, and again has the

benefit of being able to be precomputed and used repeatedly.

1.2.3 Obtaining Body-induced Velocities
Velocity Tangent to the Body Surface
After we have solved for the node strengths, 𝜸, that coincide with our

selected body geometry, we desire to use those strengths to find the

velocity somewhere in the field. We are especially interested in finding

the surface velocity on the body and using it to determine the pressure
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3 Martensen, “Die Berechnung der

Druckverteilung an dicken Gitterprofilen

mit Hilfe von Fredholmschen

Integralgleichungen zweiter Art,” 1959.

r
Remember that the jump term is a jump

in tangential velocity and the linear system

solution only gave us a magnitude, so

before adding the jump term in, we need to

make sure to separate it into components

tangent to the panel.

distribution on the body surface. In order to obtain the surface velocity,

we need to find the velocity induced tangent to the panels. We can do

so by applying the same kind of Fredholm integral expression, but this

time taking the tangential derivative, and remembering that the jump

term across the boundary for the tangential velocity is −𝛾/2 outward

and 𝛾/2 inward
3
:

𝑣tan(𝑡) = ±𝛾(𝑡)
2

+
∮
𝒮
𝛾(𝑠)𝜕𝝓̂(𝑠, 𝑡)

𝜕𝒕𝑡
d𝑠 + 𝜕𝝓∞

𝜕𝒕𝑡
(1.42a)

– or –

𝑣tan(𝑡) = ±𝛾(𝑡)
2

+
∮
𝒮
𝛾(𝑠)𝑽̂ (𝑠, 𝑡) · 𝒕(𝑡)d𝑠 + 𝑽∞ · 𝒕(𝑡). (1.42b)

We can therefore use the same discretization scheme and induced

velocity expressions as we did to create our linear system. To simplify

things further, we can also simply take the sum of the full induced

velocities on the control points and the magnitude will be the surface

velocity. This is due to the fact that we solved for the vortex strengths

based on the boundary condition of zero flow normal to the control

points; therefore when all the velocity components are summed, all that

is left is the velocity tangent to the surface.
r

𝑣tan𝑖
=

������±𝛾𝑖
2

𝒕𝑖 +
𝑁+1∑
𝑗=1

[
𝛾𝑗𝑴𝑖 𝑗

]
+ 𝑽∞

������ , (1.43)

where

𝛾𝑖 =
𝛾𝑖 + 𝛾𝑖+1

2

, (1.44)

and

𝑴𝑖 𝑗 =

{
𝐼𝐶𝑡

𝑖 𝑗
for 𝑗 = 1, 𝑁 + 1

𝐼𝐶𝑡
𝑖 𝑗
+ 𝐼𝐶𝑡

𝑖(𝑗−1) for 2 ≤ 𝑗 ≤ 𝑁,
(1.45)

where for the nominal case, the components of the influence coefficients

are defined identically to equation (1.14), but we keep them in vector

format for simplicity:

𝐼𝐶𝑡𝑖 𝑗 =

(
Δ𝑠 𝑗

𝑁∑
𝑘

𝑤𝑘𝑣𝑧(𝑠(𝜁𝑘), 𝑡)(1 − 𝜁𝑘)
)
+

(
Δ𝑠 𝑗

𝑁∑
𝑘

𝑤𝑘𝑣𝑟(𝑠(𝜁𝑘), 𝑡)(1 − 𝜁𝑘)
)

𝐼𝐶𝑡
𝑖(𝑗+1) =

(
Δ𝑠 𝑗

𝑁∑
𝑘

𝑤𝑘𝑣𝑧(𝑠(𝜁𝑘), 𝑡)𝜁𝑘

)
+

(
Δ𝑠 𝑗

𝑁∑
𝑘

𝑤𝑘𝑣𝑟(𝑠(𝜁𝑘), 𝑡)𝜁𝑘

)
.

(1.46)

For the self-induced case, again, the expressions are identical to equa-

tion (1.17), but again we keep things in vector format rather than dotting

with the normal:
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𝐼𝐶𝑡𝑖𝑖 =

(
Δ𝑠𝑖

𝑁∑
𝑘

𝑤𝑘

[
𝑣𝑧(𝑠(𝜁𝑘), 𝒑𝑖) − 𝑆𝑧(𝑠(𝜁𝑘), 𝒑𝑖) +

𝐴𝑧(𝒑𝑖)
Δ𝑠𝑖

]
(1 − 𝜁𝑘)

)
+

(
Δ𝑠𝑖

𝑁∑
𝑘

𝑤𝑘

[
𝑣𝑟(𝑠(𝜁𝑘), 𝒑𝑖) − 𝑆𝑟(𝑠(𝜁𝑘), 𝒑𝑖) +

𝐴𝑟(𝒑𝑖)
Δ𝑠𝑖

]
(1 − 𝜁𝑘)

)
𝐼𝐶𝑡

𝑖(𝑖+1) =

(
Δ𝑠𝑖

𝑁∑
𝑘

𝑤𝑘

[
𝑣𝑧(𝑠(𝜁𝑘), 𝒑𝑖) − 𝑆𝑧(𝑠(𝜁𝑘), 𝒑𝑖) +

𝐴𝑧(𝒑𝑖)
Δ𝑠𝑖

]
𝜁𝑘

)
+

(
Δ𝑠𝑖

𝑁∑
𝑘

𝑤𝑘

[
𝑣𝑟(𝑠(𝜁𝑘), 𝒑𝑖) − 𝑆𝑟(𝑠(𝜁𝑘), 𝒑𝑖) +

𝐴𝑟(𝒑𝑖)
Δ𝑠𝑖

]
𝜁𝑘

)
.

(1.47)

Note that the coefficients, 𝑴 , along with the system influence coefficients,

𝑮∗
, can be precomputed and stored, although there is really no need

for an LU-decomposition for 𝑴 as there is no linear solve, but rather a

direct matrix-vector multiplication to calculate the tangential velocity. In

addition, the procedure in the presence of a trailing edge gap panel is

identical to that presented for the normal induced velocities, with the

exception already discussed here: that no dot product need be taken.

Velocity at Arbitrary Points in Space
For arbitrary points in space, the procedure for obtaining velocities is

nearly identical, with the exceptions that there will be no self-induced or

jump terms off the body surface, and we need not dot the components with

any unit vector, as we typically want to know the velocity components in

the global reference frame.

𝑽field(𝒒) =
∮
𝒮
𝛾(𝑠)∇𝝓(𝑠, 𝒒)d𝑠 + ∇𝝓∞ (1.48a)

– or –

𝑽field(𝒒) =
∮
𝒮
𝛾(𝑠)𝑽 (𝑠, 𝒒)d𝑠 + 𝑽∞. (1.48b)

We can still use the same discretization scheme and induced velocity

expressions as we did to create our linear system, and body surface

velocity calculations, but this time, instead of dotting the velocity vector

with some vector, we will keep things in a vector format. In other

words, we will keep the axial and radial components of induced velocity

separate:

𝑽field(𝒒) = 𝑴𝜸 + 𝑽∞. (1.49)

where

𝑴 𝑗 =

{
𝐼𝐶

𝑓

𝑗
for 𝑗 = 1, 𝑁 + 1

𝐼𝐶
𝑓

𝑗
+ 𝐼𝐶 𝑓

𝑗−1
for 2 ≤ 𝑗 ≤ 𝑁,

(1.50)
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s
remembering the vector identity ∇ · ∇ ×

𝝍 = 0.

t
Therefore automatically satisfying conti-

nuity.

u
See nearly any math text covering partial

differential equation solution methods.

where

𝐼𝐶
𝑓

𝑗
=

[
Δ𝑠 𝑗

𝑁∑
𝑘

𝑤𝑘𝑣𝑧(𝑠(𝜁𝑘), 𝒒)(1 − 𝜁𝑘),Δ𝑠 𝑗
𝑁∑
𝑘

𝑤𝑘𝑣𝑟(𝑠(𝜁𝑘), 𝒒)(1 − 𝜁𝑘)
]

𝐼𝐶
𝑓

𝑗+1
=

[
Δ𝑠 𝑗

𝑁∑
𝑘

𝑤𝑘𝑣𝑧(𝑠(𝜁𝑘), 𝒒)𝜁𝑘 ,Δ𝑠 𝑗
𝑁∑
𝑘

𝑤𝑘𝑣𝑟(𝑠(𝜁𝑘), 𝒒)𝜁𝑘

]
.

(1.51)

1.2.4 Ring Vortex Induced Velocities
We still have not defined the expression for the unit induced velocity

due to a free vortex, 𝑽̂ (𝑠, 𝑡). This section covers the derivation of the

induced velocity due to ring vortices, or in other words, axisymmetric

free vortices. To derive an expression for the unit induced velocity due

to a ring vortex, let us begin by defining some vector potential, 𝝍, such

that
s

𝑽 = ∇ ×𝝍, (1.52)

and

∇ · 𝝍 = 0, (1.53)

or in other words, 𝝍 is a divergence free vector field.
t

Next we take the definition of vorticity (vorticity is the curl of the

velocity) and plug in our expression for 𝝍:

𝝎 = ∇ × 𝑽

= ∇ ×
(
∇ ×𝝍

)
= ∇

(
∇ · 𝝍

)
− ∇2𝝍 (vector identity).

(1.54)

Since we defined 𝝍 to be divergence free, our expression for vorticity

simplifies to the Poisson equation

𝝎 = −∇2𝝍. (1.55)

We can apply a Green’s function in order to solve for 𝝍 in three

dimensions, where the known Green’s function
u

takes the form of

𝒢 =
−1

4𝜋|𝒓| , (1.56)

where |𝒓| is the Euclidean distance from the point of influence and the

point of interest. Applying this Green’s function to the solution of 𝝍
yields

𝝍 =
1

4𝜋

∫
𝒱

𝝎(𝒒)
|𝒓| d

3𝑠. (1.57)

Now that we have a fundamental expression for 𝝍, let us look at the

case for a vortex ring. We begin with some assumptions about the vortex

ring that follow from assumption 1.1.
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Assumption 1.5

The vortex ring is circular, such that the ring radius is constant.

𝑟𝑜 = constant

Assumption 1.6

The vortex ring circulation is constant and in the tangential direction

𝚪 = 𝛾𝒆̂𝜃

These assumptions formalize our axisymmetric assumption somewhat,

and from them we can conclude that the vortex ring has no influence in

the tangential direction, 𝒆̂𝜃.

𝒆̂𝑧
𝒑𝑜 = (𝑟𝑜 , 𝜃𝑜 , 𝑧𝑜)

𝒑 = (𝑟, 𝜃 = 0, 𝑧)

𝒆̂𝑟

𝒆̂𝜃

𝚪

Figure 1.5: Coordinate system for vortex ring induced velocity.

In figure 1.5 we see the coordinate system we will be using going

forward. Without loss of generality, we will set the field point, 𝒑, to be

on the 𝜃 = 0 plane.

Putting the solution to Poisson’s equation in terms of our coordinate

system gives

𝝍 =
1

4𝜋

∫
𝒱

𝝎(𝒙′)
|𝒑 − 𝒑′| 𝑟𝑜d𝜃

′
d𝑟′d𝑧′. (1.58)

For a vortex ring, which is infinitesimally thin in the 𝒆̂𝑟 and 𝒆̂𝑧
directions, we can define the vorticity of the ring to be

𝝎(𝒑) = 𝛾𝛿(𝑧 − 𝑧𝑜)𝛿(𝑟 − 𝑟𝑜)𝒆̂𝜃 . (1.59)

where 𝛿 is the Dirac delta function. Plugging this expression in for

vorticity, gives

𝝍 =
1

4𝜋

∫
𝒱

𝛾𝛿(𝑧 − 𝑧𝑜)𝛿(𝑟 − 𝑟𝑜)𝒆̂𝜃(𝜃′)
|𝒑 − 𝒑′| 𝑟𝑜d𝜃

′
d𝑟′d𝑧′

𝝍 =
1

4𝜋

∫ 𝜋

−𝜋

𝛾𝒆̂𝜃(𝜃′)
|𝒑 − 𝒑′| 𝑟𝑜d𝜃

′,

(1.60)
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which we can simplify by taking the constants out of the integral:

𝝍 =
𝛾𝑟𝑜
4𝜋

∫ 𝜋

−𝜋

𝒆̂𝜃(𝜃′)
|𝒑 − 𝒑′|d𝜃

′. (1.61)

Next, let us tackle the denominator of the integrand, which is the

Euclidean distance between a point on the vortex ring and a point we have

chosen to be on the 𝜃 = 0 plane. We apply the distance formula, for which

we need to find the individual differences in each coordinate position. To

obtain the Euclidean distance, it may be easier to momentarily think in

terms of Cartesian coordinates, keeping the 𝑧-direction the same. Thus

the length in the 𝑧-direction is simply the difference in the 𝑧-coordinates,

𝑧−𝑧𝑜 . To get the 𝑥 and 𝑦 distances, we require slightly more consideration.

If we let the 𝑦-direction be normal to the 𝑥 − 𝑧 plane (the 𝜃 = 0 plane) on

which the field point is defined, then we let the 𝑦 component of the field

point be 𝑦 = 0, which means the distance in the 𝑦-direction is simply

the position of the point on the ring, 𝑦𝑜 . At a given 𝜃𝑜 , the distance

in the 𝑦-direction will be 𝑦𝑜 = 𝑟𝑜 sin𝜃𝑜 ; 𝜃 being right hand positive

taken about the 𝑧-axis. In the 𝑥-direction, we see that at the field point,

the 𝑥-position is simply 𝑟, since the point lies on the 𝑥 − 𝑧 plane. For

the point on the vortex ring, we see that similar to the 𝑦-direction, the

𝑥-position is 𝑥𝑜 = 𝑟𝑜 cos𝜃𝑜 . Before putting everything together, let us

apply a normalization that will prove to be convenient in our notation

later. We will normalize the positions of the points by the vortex ring

radius. We do this by multiplying by 𝑟𝑜/𝑟𝑜 = 1 giving the points in

Cartesian coordinates as

𝒑 = 𝑟𝑜

[
𝑧

𝑟𝑜
𝒆̂𝑧 , 0𝒆̂𝑦 ,

𝑟

𝑟𝑜
𝒆̂𝑥

]
(1.62)

𝒑𝑜 = 𝑟𝑜

[
𝑧𝑜

𝑟𝑜
𝒆̂𝑧 , sin𝜃𝑜 𝒆̂𝑦 , cos𝜃𝑜 𝒆̂𝑥

]
(1.63)

Putting all of these together we have

|𝒑 − 𝒑𝑜| = 𝑟𝑜

[(
𝑧 − 𝑧𝑜
𝑟𝑜

)
2

+ (sin𝜃𝑜)2 +
(
𝑟

𝑟𝑜
− cos𝜃𝑜

)
2

]
1/2

. (1.64)

To help clean up the notation, we will introduce the following

normalized variables.

𝜉 =
𝑧 − 𝑧𝑜
𝑟𝑜

(1.65)

𝜌 =
𝑟

𝑟𝑜
. (1.66)

In addition, we can simplify the radicand of our Euclidean distance

expression by expanding the last term and applying the trigonometric

identity sin
2 𝜃 + cos

2 𝜃 = 1:
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𝜉2 + sin
2 𝜃𝑜 +

(
𝜌 − cos𝜃𝑜

)
2

𝜉2 + sin
2 𝜃𝑜 + 𝜌2 + cos

2 𝜃𝑜 − 2𝜌 cos𝜃𝑜

𝜉2 +
����������:1(
sin

2 𝜃𝑜 + cos
2 𝜃𝑜

)
+ 𝜌2 − 2𝜌 cos𝜃𝑜 (trig identity)

𝜉2 + 𝜌2 + 1 − 2𝜌 cos𝜃𝑜

(1.67)

With this simplified radicand, equation (1.64) becomes

|𝒑 − 𝒑𝑜| = 𝑟𝑜
[
𝜉2 + 𝜌2 + 1 − 2𝜌 cos𝜃𝑜

]
1/2

, (1.68)

which if we plug back in to our full expression for 𝝍 (equation (1.61)) we

have

𝝍 =
𝛾

4𝜋

∫ 𝜋

−𝜋

𝒆̂𝜃(𝜃′)[
𝜉2 + 𝜌2 + 1 − 2𝜌 cos𝜃′

]
1/2

d𝜃′. (1.69)

We now will apply one more advantage of our axisymmetric assump-

tion, which is that both the potential and velocity fields are axisymmetric.

Because the field point is set, without loss of generality, on the 𝑥 − 𝑧 (or

𝜃 = 0) plane, we can take the radially induced velocity at the field point

to be only in the 𝑥-direction, and the tangential component to be only

in the 𝑦-direction. Therefore we make take 𝒆̂𝜃 to be its 𝑦 component:

cos𝜃𝒆̂𝑦 . Likewise, 𝒆̂𝑟 can be replaced with its 𝑥-component: cos𝜃𝒆̂𝑥 .
Conveniently, this allows us to perform one integration over 𝜃 as the

single variable rather than having to perform a double integration of

𝑥 and 𝑦 thereby reducing our expression for 𝝍 to only the tangential

component, 𝜓𝜃. Therefore we replace the 𝒆̂𝜃(𝜃′) in the numerator of

equation (1.69) with cos(𝜃′) to arrive at the expression for the tangential

component of 𝝍,

𝜓𝜃(𝒙 , 𝒙𝑜) =
𝛾

4𝜋

∫ 𝜋

−𝜋

cos(𝜃′)[
𝜉2 + 𝜌2 + 1 − 2𝜌 cos𝜃′

]
1/2

d𝜃′. (1.70)

We are now left with a simplified expression for 𝜓, but that is still a

relatively difficult integral to implement numerically, and perhaps more

difficult to approach analytically. To make our lives easier, we are going

to get our expression in terms of elliptic integrals, which are far simpler

to implement numerically. We can make this transformation by first

making a slight change to the bounds of integration, taking advantage of

the fact that the integrand is an even function.

𝜓𝜃(𝒙 , 𝒙𝑜) =
𝛾

2𝜋

∫ 𝜋

0

cos(𝜃′)[
𝜉2 + 𝜌2 + 1 − 2𝜌 cos𝜃′

]
1/2

d𝜃′. (1.71)

Next, we will apply the substitution
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𝜃′ = 2𝜑 (1.72)

d𝜃′ = 2d𝜑, (1.73)

noting the bounds of integration need to be divided by 2 as well, and

changed to [0, 𝜋/2]. Applying equation (1.72) and the trigonometric

identity cos(2𝜑) = 2 cos
2(𝜑) − 1 gives

𝜓𝜃(𝒙 , 𝒙𝑜) =
𝛾

𝜋

∫ 𝜋
2

0

2 cos
2(𝜑) − 1[

𝜉2 + 𝜌2 + 1 − 4𝜌 cos
2 𝜑 + 2𝜌

]
1/2

d𝜑

=
𝛾

𝜋

∫ 𝜋
2

0

2 cos
2(𝜑) − 1[

𝜉2 + (𝜌 + 1)2 − 4𝜌 cos
2 𝜑

]
1/2

d𝜑.

(1.74)

We will immediately apply another substitution

cos 𝜑 = 𝑡 (1.75)

d𝜑 =
d𝑡

− sin 𝜑

= − d𝑡√
1 − cos

2 𝜑

= − d𝑡√
1 − 𝑡2

,

(1.76)

where cos (𝜋/2) = 0 and cos(0) = 1 so we will flip the bounds and cancel

out the negative in equation (1.76):

𝜓𝜃(𝒑, 𝒑𝑜) =
𝛾

𝜋

∫
1

0

2𝑡2 − 1[
𝜉2 + (𝜌 + 1)2 − 4𝜌𝑡2

]
1/2 [1 − 𝑡2]1/2

d𝑡. (1.77)

Next we multiply by the top and bottom of the integrand by

[
(𝜌 + 1)2 + 𝜉2

]−1/2

,

noting that this term is constant relative to the integral and can therefore

be brought outside.

𝜓𝜃(𝒑, 𝒑𝑜) =
𝛾

𝜋
[
(𝜌 + 1)2 + 𝜉2

]
1/2

∫
1

0

2𝑡2 − 1[
1 − 4𝜌𝑡2

(𝜌+1)2+𝜉2

]
1/2

[1 − 𝑡2]1/2

d𝑡.

(1.78)

we now let

𝑚 =
4𝜌

(𝜌 + 1)2 + 𝜉2

(1.79)

which cleans things up to be
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𝜓𝜃(𝒑, 𝒑𝑜) =
𝛾

𝜋
[
(𝜌 + 1)2 + 𝜉2

]
1/2

∫
1

0

2𝑡2 − 1

[1 − 𝑚𝑡2]1/2 [1 − 𝑡2]1/2

d𝑡. (1.80)

Our integrand is now almost matching to elliptic integrals. We just need

to apply some algebraic manipulations to the numerator to match elliptic

integral expressions of the form

𝒦(𝑚) =
∫

1

0

d𝑡√
(1 − 𝑡2)(1 − 𝑚𝑡2)

(1.81)

ℰ(𝑚) =
∫

1

0

√
1 − 𝑚𝑡2√
(1 − 𝑡2)

d𝑡 (1.82)

where 𝒦(𝑚) and ℰ(𝑚) are elliptic integrals of the first and second kind,

respectively. Making the required algebraic manipulations yields

𝜓𝜃(𝒑, 𝒑𝑜) = − 𝛾

𝜋
[
(𝜌 + 1)2 + 𝜉2

]
1/2

∫
1

0

1 − 2

𝑚 + 2

𝑚 (1 − 𝑚𝑡2)
[1 − 𝑚𝑡2]1/2 [1 − 𝑡2]1/2

d𝑡. (1.83)

Splitting the integrand up we have

𝜓𝜃(𝒑, 𝒑𝑜) = − 𝛾

𝜋
[
(𝜌 + 1)2 + 𝜉2

]
1/2

[ (
1 − 2

𝑚

) ∫
1

0

d𝑡

[1 − 𝑚𝑡2]1/2 [1 − 𝑡2]1/2

+ 2

𝑚

∫
1

0

[1 − 𝑚𝑡2]1/2

[1 − 𝑡2]1/2

d𝑡

]
.

(1.84)

Each of the integrals is now in the form of an elliptic integral. Making

the substitution for elliptic integrals gives

𝜓𝜃(𝒑, 𝒑𝑜) = − 𝛾

𝜋
[
(𝜌 + 1)2 + 𝜉2

]
1/2

[
2

𝑚
ℰ(𝑚) −

(
2

𝑚
− 1

)
𝒦(𝑚)

]
. (1.85)

General Form of Induced Velocities
The next step is to obtain the induced velocity from the vector potential,

𝜓𝜃(𝒑, 𝒑𝑜). Remember that 𝑽 = ∇ × 𝝍, which expands in cylindrical

coordinates to

𝑽 =

(
1

𝑟

𝜕𝜓𝑧

𝜕𝜃
− 𝜕𝜓𝜃

𝜕𝑧

)
𝒆̂𝑟

+
(
𝜕𝜓𝑟
𝜕𝑧

− 𝜕𝜓𝑧

𝜕𝑟

)
𝒆̂𝜃

+ 1

𝑟

(
𝜕(𝑟𝜓𝜃)
𝜕𝑟

− 𝜓𝑟
𝜃

)
𝒆̂𝑧 .

(1.86)
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v
In other words, we have set 𝛾 = 1

8 Ryall et al., “Design and Test of a Series

of Annular Aerofoils,” 1967.

Since our axisymmetric assumption allowed us to eliminate all but the

tangential component of the vector potential, all but the 𝜓𝜃 components

in equation (1.86) disappear, leaving us with the following induced

velocities in the 𝑟- and 𝑧-directions.

𝑣𝑧 =
1

𝑟

𝜕(𝑟𝜓𝜃)
𝜕𝑟

, (1.87a)

𝑣𝑟 = −𝜕𝜓𝜃

𝜕𝑧
. (1.87b)

After some tedious algebra (see section 1.A), we arrive at the following

expressions for the unit
v

induced velocity due to a vortex ring.

𝑣
𝛾
𝑧 =

1

2𝜋𝑟𝑜

1

𝐷1

[
𝒦(𝑚) −

(
1 + 2(𝜌 − 1)

𝐷2

)
ℰ(𝑚)

]
𝑣
𝛾
𝑟 = − 1

2𝜋𝑟𝑜

𝜉/𝜌
𝐷1

[
𝒦(𝑚) −

(
1 + 2𝜌

𝐷2

)
ℰ(𝑚)

] (1.88a)

(1.88b)

where the superscript, 𝛾, indicates a unit vortex induced velocity. In

addition, 𝒦(𝑚) and ℰ(𝑚) are complete elliptic integrals of the first and

second kind, respectively, and

𝑚 =

(
4𝜌

𝜉2 + (𝜌 + 1)2

)
𝜉 =

𝑧 − 𝑧𝑜
𝑟𝑜

𝜌 =
𝑟

𝑟𝑜

𝐷1 =
[
𝜉2 + (𝜌 + 1)2

]
1/2

𝐷2 = 𝜉2 + (𝜌 − 1)2.

(1.89)

(1.90)

(1.91)

(1.92)

(1.93)

1.2.5 Ring Source Induced Velocities
Although our method for modeling the body aerodynamics primarily

uses vortex ring distributions, we will find later that we will want to

know the expressions for source ring induced velocities as well. We

include those expressions here for easy reference. Note that a similar

process to the derivation of the vortex ring induced velocities can be

used to develop expressions for the induced velocity due to a ring source.

Here we simply state the expressions from Ryall and Collins
8
, noting

that the expressions for vortex induced velocity we have derived here

also match the expressions they give.
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2 Lewis, Vortex Element Methods for Fluid
Dynamic Analysis of Engineering Systems,
1991.

9 McDonald et al., “Open Vehicle Sketch

Pad: An Open Source Parametric

Geometry and Analysis Tool for

Conceptual Aircraft Design,” 2022.

𝑣𝜎𝑧 =
1

2𝜋𝑟𝑜

𝜉
𝐷1

(
2

𝐷2

ℰ(𝑚)
)

𝑣𝜎𝑟 =
1

2𝜋𝑟𝑜

1/𝜌
𝐷1

[
𝒦(𝑚) −

(
1 − 2𝜌(𝜌 − 1)

𝐷2

)
ℰ(𝑚)

]
,

(1.94a)

(1.94b)

where the superscript, 𝜎, indicates a unit source induced velocity. The

other variables in equation (1.361) are as defined for the vortex ring

expressions.

1.2.6 Validation of Isolated Body Aerodynamics
Isolated Duct

Figure 1.6: Isolated annular airfoil cross section used for validation for a duct with

length/diameter of 0.5988.

For the isolated duct, we compare with data provided by Lewis

for an annular airfoil using the NACA 662-015 geometry and with a

length to diameter ratio of 0.5988
2
. We generated smooth NACA 66-

015 geometry using the airfoil tools within Open Vehicle Sketch Pad

(OpenVSP)
9
, and for the geometry producing figure 1.7, we interpolated

the OpenVSP coordinates using a cosine spacing resulting in a total

of 161 coordinate points, and thus 160 panels. See figure 1.6 for the

cross sectional geometry we used. Figure 1.7 shows a comparison of the

experimental data provided by Lewis and the computation output from

DuctAPE. Observing figure 1.7, we see very good agreement with the

experimental data, with minor discrepancies on the aft portion of the

duct, due to viscous effects being ignored in the present methodology.

0.00 0.25 0.50 0.75 1.00

−0.5

0.0

0.5

1.0

x

𝑐𝑝

exp outer

exp inner

DuctAPE

Figure 1.7: Comparison of experimental data with DuctAPE for an isolated duct shows

very good agreement despite the inviscid approximation in DuctAPE’s development.

https://books.google.com/books?vid=ISBN9780521360104
https://books.google.com/books?vid=ISBN9780521360104
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w
Note that after 700 panels, the numerical

integration scheme had trouble converg-

ing due to the proximity of the singulari-

ties for extremely small panels.

Figure 1.8 shows a refinement convergence for the aforementioned

geometry. We start with a very coarse refinement of 20 panels, and

increase by 100 panels until reaching 700.
w

Comparing the value of the

sum of the local surface pressure coefficients multiplied by the associated

panel length, we see that for 160 panels, a typical number in general use

cases, we have only a 0.93% difference from the value computed with

700 panels.

10
1.5

10
2.0

10
2.5

−0.54

−0.53

−0.52

−0.51

−0.50

−0.49

160 panels

Number of Panels

∑𝑁
𝑖=1

[
𝑐𝑝𝑖Δ𝑠𝑖

]

Figure 1.8: Between 100 and 200 panels is generally a sufficient refinement for our use

case.

Isolated Center Body

Figure 1.9: Isolated center body geometry used for validation; note the trailing edge

does not extend all the way to zero radius.

For the isolated center body, we again compare with data provided

by Lewis as shown in figure 1.9. Figure 1.7 shows a comparison of

the experimental data provided by Lewis and the computation output

from DuctAPE. We used the coordinates provided by Lewis to obtain

the leading edge circular radius, the length of the flat portion, and the

total length of the cross section to generate our own smooth geometry

manually For the geometry producing figure 1.10, we interpolated the

coordinates using a cosine spacing resulting in a total of 81 coordinate

points, and thus 80 panels. Observing figure 1.10, we see good agreement

with the experimental data, with discrepancies near the trailing edge

which are, again, a result of the inviscid assumption in DuctAPE, as

well as the small radial dimensions at the trailing edge, as discussed in

section 1.2.2.

Figure 1.11 shows a refinement convergence for the aforementioned

geometry. We start with a very coarse refinement of 20 panels, increas-

ing by 10s until reaching 100 panels, after which we increase by 100

panels until reaching 350 (half of what was used in the duct validation).

Comparing the value of the sum of the local surface pressure coefficients
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Figure 1.10: Comparison of experimental data with DuctAPE for an isolated hub shows

good agreement despite the inviscid approximation in DuctAPE’s development.

multiplied by the associated panel length, we see that for 80 panels, a

typical number in general use cases, we have 14.7% difference from the

value computed with 350 panels; though the absolute magnitudes are

very small in the first place.

Multi-body System Verification
If we now combine these two geometries together, we can check that a

multi-body system analysis works as expected. Unfortunately, we do not

have any experimental data at the time for an isolated duct and center

body, but we can compare with Ducted Fan Design Code, from which we

have developed most of our methodology, for verification. Figure 1.14

shows the geometry of the duct and center body we have been using

thus far for reference. We now place both in a single system in order to

verify that multi-body systems work properly.

As can be seen in figure 1.13, the surface velocity on the hub and

pressure on the duct match very well to DFDC, lending confidence in

DuctAPE’s ability to model both a duct and hub together.

10
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1.8
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−0.035
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−0.015
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Number of Panels

∑𝑁
𝑖=1

[
𝑐𝑝𝑖Δ𝑠𝑖

]

Figure 1.11: Between 70 and 100 panels is generally a sufficient refinement for our use

case.
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Figure 1.12: Isolated duct and center body geometry together.
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(a) Comparison of the surface velocity

on the center body with sharp trailing

edge calculated by DFDC and calculated

by DuctAPE.
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𝑐𝑝

(b) Comparison of the surface pressure

on the duct with sharp trailing edge

calculated by DFDC and calculated by

DuctAPE.

Figure 1.13: DuctAPE (blue) matches very well to DFDC (red dash) for the multi-body,

no rotor case, with sharp trailing edges.

As a second check, we use geometry provided in the DFDC example

files that contain blunt trailing edges on the duct and center body. In this

case, we need to apply the augmentations to the system for trailing edge

gap panels. We see in figure 1.15 that DuctAPE also matches well with

Figure 1.14: Duct and center body geometry provided in DFDC examples.

DFDC in this case.
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(a) Comparison of the surface velocity

on the center body with blunt trailing

edge calculated by DFDC and calculated

by DuctAPE.

0.0 0.1 0.2 0.3

−1.0

−0.5

0.0

0.5

1.0

x

𝑐𝑝

(b) Comparison of the surface pressure

on the duct with blunt trailing edge

calculated by DFDC and calculated by

DuctAPE.

Figure 1.15: DuctAPE (blue) matches very well to DFDC (red dash) for the multi-body,

no rotor case with blunt trailing edges.
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1.3 No Duct Solution: Rotor-Wake Lifting Line Model
1.3.1 Reference Frames
To begin, we need to start with an explanation of the various reference

frames and velocity decompositions used in the rotor and wake models.

We introduce multiple reference frames, because we would like to

perform our analysis in steady frames. The first frame we will use is the

absolute reference frame, which is the reference frame of an observer

stationed at a static location on the duct wall. Since the aerodynamics of

a rotor are inherently unsteady, we can’t actually perfectly model things

as steady. If we, however, change our reference frame to be relative to a

blade as we pass across the blade, we can reasonably approximate the

flow across the blade section as steady. In this blade relative, or simply

relative, reference frame, the observer is stationed on a blade such that

to the observer the blade is stationary.

Absolute Frame
Along with the absolute reference frame, we introduce the absolute

coordinate system in figure 1.16. As can be seen, the duct is defined

in a right-handed cylindrical coordinate system. We define the 𝑧 axis

to be along the axis of symmetry (also the center line/axis of rotation

for the rotor(s)), positive in the downstream direction. The 𝑟 axis is

positive from the center line outward. Finally, 𝜃 is positive about the

𝑧-axis according to the right-handed system. We choose the origin to

be located on the 𝑧 axis, aligned with the duct leading edge, or in other

words, the inlet plane.

𝒆̂𝑧

𝒆̂𝑟

𝒆̂𝜃

Figure 1.16: Meridional view showing the absolute reference frame. Example duct and

center body geometry is shown in blue, the origin location is shown in red, and an

example blade lifting line location is shown in green.

Relative Frame
It may be helpful to initially think of the blade element reference frame

as orthogonal to the slice of the absolute frame shown in figure 1.16.

Imagine standing on the blade looking from the direction of the duct

wall toward the rotor hub (in the negative 𝑟 direction). If you happen to

be familiar with turbo-machinery conventions, the 𝑧-𝑟 slice of figure 1.16

is the meridional view, and the 𝑚-𝜃 slice of figure 1.17 is the cascade

view. We can use this cascade view to understand the various velocity
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x
We will assume according to assump-

tion 1.1 that 𝑪∞ = ||𝑪∞||𝑧̂.

y
Note that we will use gray boxes to high-

light expressions that are not used imme-

diately, but will be vital in later sections

of our development.

decompositions through which we can relate the absolute and relative

reference frames. The blade rotates in the positive 𝜃 direction, and the

𝑚 axis (where 𝑑𝑚2 = 𝑑𝑧2 + 𝑑𝑟2
) is along a streamline passing through

the lifting line representing the blade. That is to say, the 𝑚 axis is the

meridional axis, which may or may not be orthogonal to 𝑟 for a given

blade element.

𝑼
𝑾

𝑪

𝐶∞

𝑪
𝑽

𝐶𝑚

𝑪
𝐶𝜃

𝒆̂𝑚

𝒆̂𝜃

Figure 1.17: Cascade view showing the blade element relative frame with velocity

decompositions.

Velocity Decomposition and Definition
The velocity triangles in figure 1.17 show how the various velocity

components are combined into useful quantities. The components that

give us the absolute local velocity, 𝑪, include: the freestream velocity,

𝑪∞,
x

and the velocity induced by the rotors and duct, 𝑽 . Together, we

have

𝑪 = 𝐶∞ 𝑧̂ + 𝑽 (1.95)

The relative velocity, 𝑾 , is comprised of the absolute velocity, 𝑪, plus

the rotational velocity at the respective radial station along the blade,

𝑼 = Ω𝑟𝜃̂.

𝑾 = 𝑪 −𝑼

= 𝑪 −Ω𝑟𝜃̂
(1.96)

It will be useful to put both 𝑪 and 𝑾 in terms of 𝑚 and 𝑟. We get the

velocities in terms of 𝑚 and 𝑟 by first separating out the various velocity

components in the absolute reference frame and applying the definition

of the meridional axis. The velocity in the absolute frame is broken down

into its various components as

𝐶𝑧 = 𝑉𝑧 + 𝐶∞
𝐶𝑟 = 𝑉𝑟

𝐶𝜃 = 𝑉𝜃 .

(1.97)

Similarly, the relative velocity is broken down as
y
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𝑊𝑧 = 𝑉𝑧 + 𝐶∞
𝑊𝑟 = 𝑉𝑟

𝑊𝜃 = 𝑉𝜃 −Ω𝑟.

(1.98)

These decompositions immediately yield the 𝜃 components of the ve-

locities. To obtain the meridional component, we can use the definition

of the meridional coordinate, that is, the direction tangent to the mean

streamline in the 𝑧 − 𝑟 (meridional) plane, to see that

𝑪𝑚 = 𝑾𝑚 = 𝐶𝑧 𝑧̂ + 𝐶𝑟𝑟. (1.99)

Now we have all the pieces to express the relative velocities in terms of the

blade element frame (see the right-most velocity triangle in figure 1.17):

𝑪 = ||𝑪𝒎||𝑚̂ + 𝐶𝜃𝜃̂ (1.100)

𝑾 = ||𝑪𝒎||𝑚̂ + (𝐶𝜃 −Ω𝑟)𝜃̂ (1.101)

1.3.2 Rotor Blade Model
For the rotor blades, themselves, we model the blade element circulation

and profile drag in the following subsections.

Blade Circulation
Assumption 1.7

The rotor can reasonably be modeled as a lifting line such that local blade
circulation can be expressed according to the Kutta-Joukowski theorem,
which states:

𝑭 = 𝜌𝑾 × 𝚪

Limitations: We require the blade to be modeled as a single line,

and we may not fully capture high solidity effects depending on

how the force is obtained.

Justification: This simplification allows for a more straightforward

approach to the rotor-wake modeling, again reducing the computa-

tional complexity.

Modeling the rotor blades as lifting lines, if we take the velocity to

be the local inflow velocity magnitude,𝑊 =
[
𝑊2

𝑧 +𝑊2

𝜃

]
1/2

at the radial

point of interest, we can take the perpendicular component of the force

to be lift also at the radial point of interest. We can then rearrange the

expression for the Kutta-Joukowski theorem in assumption 1.7 for the

local circulation magnitude, Γ(𝑟), along the blade as
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Γ(𝑟) = 𝐿′

𝜌𝑊
. (1.102)

For each blade section, we will prescribe an airfoil polar such that the

lift coefficient is known for a given angle of attack. If we then take the

expression for the two-dimensional coefficient of lift—

𝑐ℓ =
2𝐿′

𝜌𝑊2𝑐
, (1.103)

where 𝑐 is the blade element chord length, and 𝑐ℓ is the local blade element

lift coefficient— and substitute into our expression for circulation (again

using the local meridional velocity), we arrive at

Γ(𝑟) = 1

2

𝑊𝑐𝑐ℓ , (1.104)

where 𝑊 , 𝑐, and 𝑐ℓ are all functions of the radial position, 𝑟, along the

rotor.

We use a blade element method approach to model the rotor aerody-

namics, in that we use a lookup table to find the lift and drag coefficients

based on the local blade element geometry and flow as shown in fig-

ure 1.18. In the case of a low-solidity rotor, we can simply use airfoil data

based on the aerodynamic angle of attack, 𝛼, which is the inflow angle,

𝛽1 minus the local blade element stagger angle, 𝛾𝑏𝑒 :

−Ω𝑟

𝑾
𝑉𝜃

𝑉𝑧 𝑽

𝐶∞
𝛽1

𝛼

𝛾𝑏𝑒 𝒆̂𝑧

𝒆̂𝜃

Figure 1.18: Velocity decomposition with angles in the blade element frame.

𝛼 = 𝛽1 − 𝛾𝑏𝑒 , (1.105)

where the inflow angle is defined as

𝛽1 = arctan

−𝑊𝜃

𝑊𝑧
= arctan

Ω𝑟 −𝑉𝜃

𝐶∞ +𝑉𝑧
, (1.106)

or in other words, the angle from the axis of rotation to the local inflow

velocity vector, 𝑾 , as seen in figure 1.18.
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For higher solidity rotors, when cascade data is available, we look

up the lift and drag coefficients based on the inflow and stagger angles

directly. In addition, the section lift and drag coefficients may depend not

only on the local angle of attack (or stagger and inflow angles), but may

also be a function of the local Reynolds, 𝑅𝑒𝑏𝑒 , and Mach, 𝑀𝑏𝑒 , numbers

which we define in the typical manner:

𝑅𝑒𝑏𝑒 =
𝜌∞𝑊𝑐

𝜇∞
, (1.107)

and

𝑀𝑏𝑒 =
𝑊

𝑎𝑠∞
, (1.108)

where 𝜌∞, 𝜇∞, and 𝑎𝑠∞ are the freestream density, dynamic viscosity,

and speed of sound, respectively. Here again,𝑊 and 𝑐 are the local (at a

given radial station) inflow magnitude and blade element chord length.

Rotor Profile Drag

Assumption 1.8

The rotor blade section profile drag can be approximated by the addition of
source elements along the rotor blade.
Limitations: We aren’t fully modeling viscous effects in the wake.

Justification: This allows us to model the wake inviscidly (which

allows us to simplify the wake model later), while still approximating

the viscous effects of the rotor on the wake velocities.

We define the rotor blade section profile drag per unit length in terms

of a local airfoil polar drag coefficient using similar logic to how we

defined the circulation due to lift. Though we are actually attempting to

approximate a viscous effect inviscidly, so we are effectively equating the

vorticity that would be introduced into the wake due to viscous profile

drag with an approximate inviscid source distribution on the blade.

Figure 1.19 shows visually this concept. The inviscid approximation of

the profile drag per unit length then takes a similar form to the local

circulation:

Σ =
1

2

𝑊𝑐𝑐𝑑 (1.109)

where 𝑐𝑑 is the blade element drag coefficient at the angle of attack

described in section 1.3.2, and again, each of the terms on the right hand

side are functions of the radial position along the blade. To get the total

source sheet strength per unit length, we smear the total source strength

per unit span of all the blades, 𝐵, around the circumference, 2𝜋:

𝜎 =
𝐵Σ

2𝜋
. (1.110)
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𝒆̂𝑟

𝒆̂𝑧
𝛾visc

𝜎 = 0

𝛾visc

RVF

𝐶𝑚
Δ𝑆

Δ𝑝𝑠 = 0

(a) The real, viscous formulation has no

sources on the rotor blades, but rather

sheds vorticity due to viscous effects.

𝒆̂𝑟

𝒆̂𝑧
𝛾visc = 0

𝜎 EIF

𝐶𝑚
Δ𝑆

Δ𝑝𝑠 = 0

(b) The equivalent inviscid formula-

tion uses source distributions along the

blade to approximate profile drag ef-

fects.

Figure 1.19: Visual comparison of real, viscous vs. equivalent inviscid formulations.

Therefore the expression for the smeared rotor source strength per

unit length along the blade is

𝜎 =
𝐵

4𝜋
𝑊𝑐𝑐𝑑 . (1.111)

1.3.3 Wake Model
For a given position on a blade producing a circulation change, ΔΓ, by

conservation of circulation, a helical vortex filament of strength −ΔΓ is

shed into the flow.

In order to represent 3D vortex filaments in our axisymmetric ref-

erence frames, we will also make the approximation that they can be

smeared into equivalent axisymmetric vortex sheets in the 𝑚 and 𝜃
directions.

Assumption 1.9

Three-dimensional helical vortex filaments can be represented in a smeared
axisymmetric model.
Limitations: We are not caputuring the full 3D and unsteady effects

of the wake.

Justification: We will see that we can develop a model that works

very well with the panel method formulation of the solid body

aerodynamics.

The smeared axisymmetric vortex sheets then have circulation to length

ratios (densities) of 𝛾𝑚 and 𝛾𝜃 in their respective directions. Because

we are modeling the wake internal to the duct, we cannot guarantee

a cylindrical wake, and therefore cannot simply model the wake with
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straight vortex cylinders. Will will still use the concept of a wake cylinder,

however to help us model discrete sections of the wake; so we continue

with a description of how we smear a helical vortex filament into a

cylindrical sheet.

We begin with a shed vortex sheet, the geometry of which we

approximate by a left-handed helix such that the helical sheet is defined

parametrically in terms of the variable 𝑡 as

𝑥(𝑡) = 𝑟 cos(−𝑡)
𝑦(𝑡) = 𝑟 sin(−𝑡)
𝑧(𝑡) = 𝑡ℓ

(1.112)

in Cartesian coordinates, and

𝑟(𝑡) = 𝑟

𝜃(𝑡) = −𝑡
𝑧(𝑡) = 𝑡ℓ

(1.113)

in polar coordinates; where ℓ is the torsional parameter describing the

distance traveled in the 𝑧 direction relative to the angle traveled in 𝜃:

ℓ =
ℎ

2𝜋
=

d𝑧

−d𝜃
, (1.114)

where ℎ is the pitch of the helix, defined as the distance traveled in 𝑧 for

one rotation of the rotor blade, in other words, the distance traveled in 𝑧

after traveling circumferentially 2𝜋𝑟

ℎ = 2𝜋𝑟
ℓ

𝑟
= 2𝜋𝑟

d𝑧

−𝑟d𝜃 = 2𝜋
d𝑧

−d𝜃
. (1.115)

Given the polar coordinates, we can define the pitch angle of the helix

such that the tangent of that angle is the ratio of the distance traveled in

𝑧 to the distance traveled circumferentially

tan 𝜙 =
d𝑧

−𝑟d𝜃 =
ℓ

𝑟
. (1.116)

It may be good to mention here that typically we see ℓ defined in

terms of ℎ such that the torsional parameter is

ℓ =
ℎ

2𝜋
(1.117)

From the pitch, we can obtain the apparent pitch, or the distance between

the helix sheets created by consecutive blades by dividing the pitch by

the number of blades, 𝐵,

ℎ𝐵 =
2𝜋
𝐵

d𝑧

−d𝜃
. (1.118)

If we now assume that:



DuctAPE Theory 38

Assumption 1.10

Vortex filaments are shed parallel to the relative inflow velocity, 𝑾 .
Limitations: This is a simplified modeling approach that ignores

the some of the flow turning of the blade.

Justification: By using this lifting line approach rather than some

other approach, such as a lifting surface, we (like many of our other

assumptions) simplify the model, allowing for simpler implementa-

tion and faster computation.

In other words, we assume that the local d𝑧 is in the direction of 𝒆̂𝑚 ,

and likewise d𝜃 in the direction of 𝒆̂𝜃 as per figure 1.17, we obtain the

non-dimensional length in the 𝑚 direction for defining the 𝛾𝜃 strength

density

ℎ𝐵 ≈ 2𝜋
𝐵

(
𝑊𝑚

−𝑊𝜃

)
. (1.119)

ΔΓ

𝑾

𝑊𝑚

−𝑊𝜃

2𝜋
𝐵

ℎ𝐵

𝒆̂𝑚

𝒆̂𝜃

(a) Wake Screw Geometry.

𝛾𝜃

𝛾𝑚

(b) Axisymmetric Smeared Cylinder.

Figure 1.20: 2D vortex sheets are generated from ratios of circulation to lengths between

vortex sheets.

Figure 1.20 shows graphically the wake screw non-dimensional

geometry and orientation of the smeared vorticity. To dimensionalize

the lengths for a given smeared cylindrical surface, we multiply by the

cylinder radius, 𝑟, to obtain the dimensional length. In addition, as we

have defined our tangential vortices (see section 1.2) to be positive in

the positive 𝜃 direction (the negative 𝑡 direction), we need to apply an

additional negative to ensure our vortices are oriented correctly. Thus

𝛾𝜃 = −−ΔΓ
ℎ𝐵𝑟

= −ΔΓ 𝐵

2𝜋𝑟

(
𝑊𝜃

𝑊𝑚

)
. (1.120)

To obtain an expression for 𝛾𝑚 we look at the distance between blades

in the 𝑡 direction, we know that the non-dimensional distance between
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z
Note that the 𝜃 component of 𝑉 is the

only component aligned with d𝜽 and is cir-

cumferentially constant due to our smear-

ing approxmation. In addition the contour

is a circle, so the integral is determined

immediately.

the blade sections is the distance about 𝑡 divided by the number of blades

(assuming even blade spacing), 2𝜋/𝐵. For a given smeared cylinder of

radius, 𝑟, we multiply by 𝑟 to obtain the dimensional distance, 2𝜋𝑟/𝐵.

To keep the vortices oriented positively in our reference frame, we need

to apply an additional negative.Applying this additional negative the

meridional vortex strength density (strength per unit length), 𝛾𝑚 , is

𝛾𝑚 = ΔΓ
𝐵

2𝜋𝑟
. (1.121)

Our expression for 𝛾𝑚 is generally applicable for steady state con-

ditions if we use the local circulation jumps across the wake at any

give point. Due to conservation of circulation, we know the circulation

jumps anywhere downstream. On the other hand, 𝛾𝜃 would only be

generally applicable if we assumed that the Ω𝑟 component of 𝑊𝜃 (see

equation (1.98)) was constant in the entire wake. In actuality, we only

know Ω𝑟 right at the rotor lifting line, but not generally in the remainder

of the wake. We therefore want to develop a more general expression

for 𝛾𝜃 based on requiring the wake to be force-free, or in other words,

we demand static pressure continuity across the vortex sheets. The

somewhat lengthy derivation for this more general expression for 𝛾𝜃
comprises the rest of section 1.3.3.

Swirl/Circulation Relation
The swirl velocity induced by upstream rotor blades, 𝑉𝜃, can be deter-

mined by applying Stokes’ and Kelvin’s theorems. If we define a control

volume around a streamtube as shown in figure 1.21, where the first

curve is taken about all upstream rotors along a streamline, and the

second curve is taken about the axis of rotation, only in the 𝑟-𝜃 plane with

radius such that the edge of the contour lies on the same streamline upon

which the first curve lies (see the dotted line in figure 1.21), we see by

Kelvin’s theorem (conservation of circulation), that the circulation due to

the upstream rotors can be related to the tangential velocity downstream

of the rotors through Stokes’ theorem:

Γ̃ =

∮
2𝜋

0

𝑽 · 𝑟d𝜽, (1.122)

where Γ̃ is the net circulation contribution of all the blades of the upstream

rotors:

Γ̃ =

𝑁∑
𝑖=1

𝐵𝑖Γ𝑖 . (1.123)

Performing the integration for a give radial position and rearranging for

𝑉𝜃
z

gives
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𝒆̂𝑧

𝒆̂𝑟

𝒆̂𝜃 𝐵1Γ1

𝐵2Γ2

Γ̃

Figure 1.21: Circulation is conserved between the dashed and solid contours, noting the

red dotted line indicating the streamline on which the Γ̃ contours align. The integral

over the contour about the axis of rotation yields 𝑉𝜃 in terms of Γ̃.

aa
Assuming here that the velocities in

this subsubsection are the equivalent in-

viscid flow velocities, 𝑉inv, implying that

no additional vorticity is induced by blade

profile drag. We also drop the “inv” sub-

script for simplicity.

𝑉𝜃 = 𝐶𝜃 =
Γ̃

2𝜋𝑟
, (1.124)

where 𝑉𝜃 in our smeared, axisymmetric model is the circumferentially

averaged swirl velocity induced by upstream rotors

For the self-induced case, the contour is placed at the rotor plane. This

means that the rotor “sees” infinite trailing vortices from any upstream

rotors, but only semi-infinite trailing vortices for itself. Thus the rotor

experiences the full swirl induced by upstream rotors, but only half of its

own swirl contribution:

(𝑉𝜃)self =
1

2𝜋𝑟

(
Γ̃ + 1

2

𝐵Γ

)
, (1.125)

where 𝐵Γ here is the number of blades and circulation of the rotor itself.

Velocity Jumps

𝒆̂𝜃

𝒆̂𝑟

𝒆̂𝑧

𝑪𝑚2

𝑪𝑚1

𝑪𝜃2

𝑪𝜃1

𝛾𝜃 𝛾𝑚
Γ2

Γ1

Figure 1.22: Circulation density can be related to velocity jump across axisymmetric

vortex sheets.

The smeared sheet strengths of equations (1.120) and (1.121) can also

be defined in terms of velocity jumps across the sheets.
aa

Starting with
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equation (1.121), we can split the ΔΓ into Γ2 − Γ1 (taking Γ̃ = 𝐵Γ for the

single rotor) for a given vortex sheet

𝛾𝑚 =
ΔΓ̃

2𝜋𝑟

=
𝐵(Γ2 − Γ1)

2𝜋𝑟
.

(1.126)

Then using equation (1.124)

𝑉𝜃2
−𝑉𝜃1

=
𝐵Γ2

2𝜋𝑟
− 𝐵Γ1

2𝜋𝑟

=
𝐵(Γ2 − Γ1)

2𝜋𝑟
;

(1.127)

which we can then substitute in to get the sheet strength in terms of the

velocity jump:

𝛾𝑚 =
𝐵(Γ2 − Γ1)

2𝜋𝑟
= 𝐶𝜃2

− 𝐶𝜃1
. (1.128)

As it so happens, in general for inviscid flows, the jump in tangential

velocity across a vortex sheet is equal to the sheet vorticity per unit length

(what we’ve previously called the circulation density). Therefore we can

similarly equate equation (1.120) to a jump in the meridional velocities

across the vortex sheet:

𝛾𝜃 = −𝐵(Γ2 − Γ1)
2𝜋𝑟

𝑊𝜃avg

𝑊𝑚avg

= 𝐶𝑚1
− 𝐶𝑚2

. (1.129)

where, to obtain the relative velocity components on the sheet, we

combine the blade relative velocities just to either side of the sheet into

averages,𝑊avg, as

𝑊𝜃avg
≡ 1

2

(𝑊𝜃1
+𝑊𝜃2

) = 1

2

(𝐶𝜃1
+ 𝐶𝜃2

− 2Ω𝑟) (1.130)

𝑊𝑚avg
≡ 1

2

(𝑊𝑚1
+𝑊𝑚2

) = 1

2

(𝐶𝑚1
+ 𝐶𝑚2

). (1.131)

If we divide equation (1.128) by equation (1.129), we get

𝛾𝑚
𝛾𝜃

= −
𝑊𝑚avg

𝑊𝜃avg

𝛾𝑚𝑊𝜃avg
= −𝛾𝜃𝑊𝑚avg

𝑊𝑚avg
𝛾𝜃 +𝑊𝜃avg

𝛾𝑚 = 0.

(1.132)

Substituting in the average velocities from equations (1.130) and (1.131)

then gives
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1

2

(𝐶𝑚1
+ 𝐶𝑚2

)𝛾𝜃 + 1

2

(𝐶𝜃1
+ 𝐶𝜃2

− 2Ω𝑟)𝛾𝑚 = 0. (1.133)

Then applying the definitions of the vortex strengths from equations (1.128)

and (1.129) yields

1

2

(𝐶𝑚1
+ 𝐶𝑚2

)(𝐶𝑚2
− 𝐶𝑚1

) + 1

2

(𝐶𝜃1
+ 𝐶𝜃2

− 2Ω𝑟)(𝐶𝜃2
− 𝐶𝜃1

) = 0. (1.134)

Simplifying

1

2

(𝐶2

𝑚1

− 𝐶2

𝑚2

+����𝐶𝑚1
𝐶𝑚2

−����𝐶𝑚1
𝐶𝑚2

) = −1

2

(𝐶2

𝜃2

− 𝐶2

𝜃1

+����𝐶𝜃1
𝐶𝜃2

−����𝐶𝜃1
𝐶𝜃2

) −Ω𝑟(𝐶𝜃2
− 𝐶𝜃1

)
1

2

(
𝐶2

𝑚1

− 𝐶2

𝑚2

+ 𝐶2

𝜃1

− 𝐶2

𝜃2

)
= −(𝐶𝜃1

− 𝐶𝜃2
)Ω𝑟

1

2

(
(𝐶2

𝑚1

+ 𝐶2

𝜃1

) −
(
𝐶2

𝑚2

+ 𝐶2

𝜃2

))
= −(𝐶𝜃1

− 𝐶𝜃2
)Ω𝑟

1

2

(
𝐶2

1
− 𝐶2

2

)
= −(𝐶𝜃1

− 𝐶𝜃2
)Ω𝑟

(1.135)

where 𝐶2 = 𝐶2

𝑚 + 𝐶2

𝜃. Then applying the definition in equation (1.127)

(and multiplying both sides by -1),

1

2

(
𝐶2

2
− 𝐶2

1

)
= −𝐵(Γ2 − Γ1)

2𝜋
Ω. (1.136)

Thermodynamic Pressure Relationships
Total Pressure To determine the pressure relationships, we begin with

the understanding that a rotor induces downstream changes in total

enthalpy and entropy which are accompanied by changes in total pressure.

We can relate these changes in pressure, enthalpy and entropy through

the first and second laws of thermodynamics as follows. The first law of

thermodynamics expressed in terms of enthalpy and in differential form

is:

d𝑞 = dℎ − 𝑣d𝑝𝑡 (1.137)

where 𝑞 is specific heat, ℎ is specific entropy, 𝑣 is specific volume and

𝑝𝑡 is total pressure. The second law of thermodynamics, assuming an

idealized (reversible) process, is expressed in differential form as:

𝑇d𝑠 = d𝑞 (1.138)

where 𝑇 is total temperature, and 𝑠 is specific entropy. Plugging in the

second law (equation (1.138)) into the first law (equation (1.137)) gives:

𝑇𝑑𝑠 = dℎ − 𝑣d𝑝𝑡 (1.139)
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ab
note that since the rest of the terms are

still in differential form, we cannot directly

use equation (1.142) at this point.

Which is a form of Gibb’s equation in terms of enthalpy. We now have

an expression relating pressure, enthalpy, and entropy. We will now use

this differential expression (equation (1.139)) to arrive at a simpler and

more useful expression for our application. First, we’ll isolate entropy

on the left hand side for convenience.

d𝑠 =
dℎ

𝑇
− 𝑣d𝑝𝑡

𝑇
. (1.140)

Moving away from using enthalpy briefly, we will assume:

Assumption 1.11

The fluid is a calorically perfect gas.
Limitations: The specific heat capacity is constant.

Justification: Our application is primarily at low Mach flows in

electric ducted fans, for which air can reasonably be modeled as a

calorically perfect gas. This allows us to obtain a simple relation

between change in enthalpy, entropy and pressure.

In which case, we can relate enthalpy and temperature in both the

following ways:

dℎ = 𝑐𝑝d𝑇

ℎ = 𝑐𝑝𝑇,

(1.141)

(1.142)

where 𝑐𝑝 here is the specific heat. Substituting equation (1.141)
ab

into

equation (1.140), we have

d𝑠 =
𝑐𝑝d𝑇

𝑇
− 𝑣d𝑝𝑡

𝑇
. (1.143)

If we also apply the ideal gas law,

𝑝𝑡𝑣 = 𝑅𝑇

𝑣 =
𝑅𝑇

𝑝𝑡

(1.144)

to the last term, we have

d𝑠 =
𝑐𝑝d𝑇

𝑇
− 𝑅�𝑇d𝑝𝑡

�𝑇𝑝𝑡

d𝑠 = 𝑐𝑝
d𝑇

𝑇
− 𝑅d𝑝𝑡

𝑝𝑡
.

(1.145)

We now integrate equation (1.145) from the ambient to local condi-

tions:
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ac
Remembering that for 𝑥/𝑦, subtracting

and adding 1 = 𝑦/𝑦 gives (𝑥−𝑦)/𝑦+𝑦/𝑦 =

(𝑥 − 𝑦)/𝑦 + 1

∫ 𝑠

𝑠∞
d𝑠 = 𝑐𝑝

∫ 𝑇

𝑇∞

d𝑇

𝑇
− 𝑅

∫ 𝑝𝑡

𝑝𝑡∞

d𝑝𝑡

𝑝𝑡

𝑠
��𝑠
𝑠∞

= 𝑐𝑝 ln(𝑇)
��𝑇
𝑇∞

− 𝑅 ln(𝑝𝑡)
��𝑝𝑡
𝑝𝑡∞

𝑠 − 𝑠∞ = 𝑐𝑝 [ln(𝑇) − ln(𝑇∞)] − 𝑅
[
ln(𝑝𝑡) − ln(𝑝𝑡∞)

]
𝑠 − 𝑠∞ = 𝑐𝑝 ln

(
𝑇

𝑇∞

)
− 𝑅 ln

(
𝑝𝑡

𝑝𝑡∞

)
.

(1.146)

Next, we want to bring enthalpy back into the picture. To do so, we

now utilize equation (1.142), multiplying the temperatures by 𝑐𝑝 to get

back into terms of specific enthalpy

𝑠 − 𝑠∞ = 𝑐𝑝 ln

(
𝑐𝑝𝑇

𝑐𝑝𝑇∞

)
− 𝑅 ln

(
𝑝𝑡

𝑝𝑡∞

)
𝑠 − 𝑠∞ = 𝑐𝑝 ln

(
ℎ

ℎ∞

)
− 𝑅 ln

(
𝑝𝑡

𝑝𝑡∞

)
.

(1.147)

If we now define changes relative to the (far upstream) freestream

values (∞ subscripts) as:

𝑝𝑡 =𝑝𝑡 − 𝑝𝑡∞ (1.148)

ℎ̃ =ℎ − ℎ∞ (1.149)

𝑠̃ =(𝑠 − 𝑠∞)/𝑅, (1.150)

then we can express equation (1.147) as
ac

𝑠̃ =
𝑐𝑝

𝑅
ln

(
1 + ℎ̃

ℎ̃∞

)
− ln

(
1 + 𝑝̃𝑡

𝑝̃𝑡∞

)
. (1.151)

Now we will assume that

Assumption 1.12

The Mach number is sufficiently low such that

𝑝𝑡

𝑝𝑡∞
≪ 1 (1.152)

ℎ̃

ℎ∞
≪ 1 (1.153)

𝑠̃ ≪ 1, (1.154)

Limitations: We are limited to low mach number regimes.

Justification: We can simplify the relationship between entropy,

enthalpy, and pressure, again allowing for a simpler methodology
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and faster computation.

With assumption 1.12 we can simplify equation (1.151) by noting that

the Taylor series expansion for a logarithm is

ln(𝑥) = (𝑥 − 1) + 1

2

(𝑥 − 1)2 + higher order terms, (1.155)

if 𝑥 ≈ 1. Therefore, by assumption 1.12, we can simplify equation (1.151)

using the first term in Taylor series approximations of each of the

logarithm terms.

𝑠̃ =
𝑐𝑝

𝑅
ln

(
1 + ℎ̃

ℎ∞

)
− ln

(
1 + 𝑝𝑡

𝑝𝑡∞

)
𝑠̃ ≃

𝑐𝑝

𝑅

ℎ̃

ℎ∞
− 𝑝𝑡

𝑝𝑡∞

𝑠̃ ≃ ��
𝑐𝑝

𝑅

ℎ̃

��
𝑐𝑝𝑇∞

− 𝑝𝑡

𝑝𝑡∞
apply equation (1.142)

𝑠̃ ≃ 𝜌∞
𝑝𝑡∞

ℎ̃ − 𝑝𝑡

𝑝𝑡∞
apply ideal gas law

𝑝𝑡∞ 𝑠̃ ≃ 𝜌∞ ℎ̃ − 𝑝𝑡 .

(1.156)

Rearranging leaves us with

𝑝𝑡 ≃ 𝜌
(
ℎ̃ − 𝑆

)
, (1.157)

where

𝑆 ≡ 𝑝𝑡∞
𝜌∞

𝑠̃ , (1.158)

where 𝜌 is the air density, and for our steady, low Mach application,

𝑝𝑡∞/𝜌∞ is nearly constant, so we can convect 𝑆 downstream in place of 𝑠̃.

Therefore we end up seeing that the total pressure at any point in the

rotor wake is the freestream total pressure plus any upstream work or

losses:

𝑝𝑡 = 𝑝𝑡∞ + 𝜌
(
ℎ̃ − 𝑆

)
(1.159)

Static Pressure The static pressure, 𝑝𝑠 , is the total pressure minus the

dynamic pressure:

𝑝𝑠 = 𝑝𝑡 −
1

2

𝜌𝑉2

𝑣𝑖𝑠𝑐 . (1.160)

Substituting in from equation (1.159) gives us
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𝑝𝑠 = 𝑝𝑡∞ − 1

2

𝜌𝑉2

𝑣𝑖𝑠𝑐 + 𝜌
(
ℎ̃ − 𝑆

)
, (1.161)

where 𝑉𝑣𝑖𝑠𝑐 is the real viscous flow velocity. Rather than finding the

full viscous flow field, which (among other things) would require more

costly wake treatment, we can use the equivalent inviscid flow velocity,

𝑉𝑖𝑛𝑣 , through the addition of a source sheet at the drag elements in the

flow (see assumption 1.8), removing the need for trailing vortex sheets

for drag elements. See figure 1.19 for a visual representation of this

concept. Using the equivalent inviscid flow simply eliminates entropy

from equation (1.161)

𝑝𝑠 = 𝑝𝑡∞ − 1

2

𝜌𝑉2

𝑖𝑛𝑣 + 𝜌ℎ̃. (1.162)

Disk Jumps
The specific work, 𝑤𝑐 , done by a rotor is related to a jump in enthalpy

across the rotor. As such, we can obtain ℎ̃ as the accumulation of changes

in enthalpy across upstream disks.

ℎ̃ =

𝑁∑
𝑖=1

Δℎdisk𝑚
(1.163)

where the jump relation Δℎdisk is defined according to the Euler turbine

equation:

Δℎdisk = 𝑤𝑐 = ΩΔ(𝑟𝐶𝜃). (1.164)

We can relate the jump in enthalpy to the circulation by applying our

lifting line assumption (assumption 1.7), which means that there is no

radial deviation in flow across the blade, as well as substituting in for 𝐶𝜃

from equation (1.124) (for a single disk).

Δℎdisk = Ω𝑟𝐶𝜃

= Ω�𝑟
𝐵Γ

2𝜋�𝑟

= Ω
𝐵Γ

2𝜋
.

(1.165)

Pressure Jumps Using equation (1.162), we see the jump in static

pressure across a vortex sheet is

𝑝𝑠2 − 𝑝𝑠1 = −1

2

𝜌
(
𝑉2

𝑖𝑛𝑣2

−𝑉2

𝑖𝑛𝑣1

)
+ 𝜌

(
ℎ̃2 − ℎ̃1

)
. (1.166)

If we substitute equation (1.165) in for the enthalpy terms, and equa-

tion (1.136) for the velocity terms in equation (1.166), we can simplify as

follows
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𝑝𝑠2 − 𝑝𝑠1 = −�������
𝜌
𝐵(Γ2 − Γ1)

2𝜋
Ω +�������

𝜌
𝐵(Γ2 − Γ1)

2𝜋
Ω (1.167)

𝑝𝑠2 − 𝑝𝑠1 = 0 (1.168)

which shows that there is no static pressure jump across the sheet, as

would be expected in reality.

Tangential Vortex Sheet Strength
As promised at the beginning of section 1.3.3, we are finally posed

to obtain a general expression for the tangential vortex sheet strength,

𝛾𝜃. Just as a reminder, we’ve needed all this preparation because the

tangential sheet strength at an arbitrary downstream location is not

generally equal to the value just behind the rotor disk. This is because we

don’t automatically know what the Ω𝑟 portion of the tangential velocity

is anywhere except right at the rotor disk. Thus we have used the zero

static pressure jump across the wake sheet as our condition for finding

a general term for 𝛾𝜃. We’ll begin with equation (1.166), setting the

pressure jump to zero, as is physical, and divide out the density (assumed

to be constant in our low Mach case) to obtain

1

2

(
𝐶2

2
− 𝐶2

1

)
= ℎ̃2 − ℎ̃1. (1.169)

Expanding out the left hand side gives

𝐶2

𝑚2

− 𝐶2

𝑚1

+ 𝐶2

𝜃2

− 𝐶2

𝜃1

= 2

(
ℎ̃2 − ℎ̃1

)
. (1.170)

Applying equation (1.124) for the 𝐶𝜃 terms:

𝐶2

𝑚2

− 𝐶2

𝑚1

= −
(

1

2𝜋𝑟

)
2 (

Γ̃2

2
− Γ̃2

1

)
+ 2

(
ℎ̃2 − ℎ̃1

)
. (1.171)

To get the general expression for 𝛾𝜃, we have two options: if 𝐶𝑚2
is

known, then using equation (1.129)

𝛾𝜃 = 𝐶𝑚1
− 𝐶𝑚2

, (1.129)

where from equation (1.171)

𝐶2

𝑚1

= 𝐶2

𝑚2

+
(

1

2𝜋𝑟

)
2 (

Γ̃2

2
− Γ̃2

1

)
− 2

(
ℎ̃2 − ℎ̃1

)
, (1.172)

gives us our general expression. We can march equation (1.172) radi-

ally inward, starting with 𝐶𝑚2
= 𝐶∞ just outside the outermost vortex

sheet. On the other hand, if 𝐶𝑚avg
is known instead, we can still use

equation (1.171) to obtain 𝛾𝜃 as follows:

𝐶𝑚avg
=

1

2

(
𝐶𝑚1

+ 𝐶𝑚2

)
(1.173)

𝐶2

𝑚2

− 𝐶2

𝑚1

=
(
𝐶𝑚1

+ 𝐶𝑚2

) (
𝐶𝑚2

− 𝐶𝑚1

)
. (1.174)
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10 Thompson et al., “Automatic

numerical generation of body-fitted

curvilinear coordinate system for field

containing any number of arbitrary

two-dimensional bodies,” 1974.

Substituting from equation (1.129)

𝐶2

𝑚2

− 𝐶2

𝑚1

= −
(
𝐶𝑚1

+ 𝐶𝑚2

)
𝛾𝜃 . (1.175)

Substituting from equation (1.173)

𝐶2

𝑚2

− 𝐶2

𝑚1

= −2𝐶𝑚avg
𝛾𝜃 . (1.176)

Rearranging for 𝛾𝜃 and substituting from equation (1.171):

𝛾𝜃 = − 1

2𝐶𝑚avg

(
−

(
1

2𝜋𝑟

)
2 (

Γ̃2

2
− Γ̃2

1

)
+ 2

(
ℎ̃2 − ℎ̃1

))
. (1.177)

1.3.4 Generating Rotor Wake Geometry
The question we must now ask ourselves is where is equation (1.177)

applied? We may first think to model the rotor wake by integrating along

streamlines, which could be done. An alternative method, however, is to

define a “grid” defined by the solution of an elliptic partial differential

system, using the solid bodies as the boundaries of the grid. By wisely

choosing the partial differential equations to solve, we can generate a

grid that is aligned with the streamlines for the inviscid isolated body

system. Thompson, Thames, and Mastin
10

provide further insights into

the benefits of this approach, which we will use for our application.

Assumption 1.13

The wake streamlines can be reasonably approximated as lying on an elliptic
grid.
Limitations: We are again ignoring viscous effects of the rotor/wake.

Justification: This is perhaps one of the greatest reducers of com-

putational cost for the code, as it allows us to pre-compute the

potentially large matrices for the induced velocities in the system.

By defining the wake geometry to lie on an elliptic grid, we can

discretize the axisymmetric wake lines into axisymmetric vortex panels

and apply the circulation density (vortex strength distribution) from

equation (1.177) along the discretized wake panels. In order to define

our wake geometry, our first task is to define the appropriate partial

differential equation. As we are seeking to find the streamlines, we begin

with the stream function.

Axisymmetric Stream Function
The 𝑧 and 𝑟 components of absolute velocity can be defined in terms of

the axisymmetric stream function, 𝜓(𝑧, 𝑟), as

https://dx.doi.org/10.1016/0021-9991(74)90114-4
https://dx.doi.org/10.1016/0021-9991(74)90114-4
https://dx.doi.org/10.1016/0021-9991(74)90114-4
https://dx.doi.org/10.1016/0021-9991(74)90114-4
https://dx.doi.org/10.1016/0021-9991(74)90114-4
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𝐶𝑧 =
1

𝜌𝑟

𝜕𝜓

𝜕𝑟
(1.178a)

𝐶𝑟 =
−1

𝜌𝑟

𝜕𝜓

𝜕𝑧
(1.178b)

where 𝜌 is the air density. Additionally, the circumferential vorticity is

defined as

𝜔𝜃 ≡ 𝜕𝐶𝑧
𝜕𝑟

− 𝜕𝐶𝑟
𝜕𝑧

. (1.179)

If we plug equation (1.178) into equation (1.179), and apply the chain

rule, we arrive at

𝜔𝜃 =
1

𝜌𝑟

(
𝜕2𝜓

𝜕𝑧2

+ 𝜕2𝜓

𝜕𝑟2

)
+ 𝜕𝜓

𝜕𝑧

𝜕

𝜕𝑧

(
1

𝜌𝑟

)
+ 𝜕𝜓

𝜕𝑟

𝜕

𝜕𝑟

(
1

𝜌𝑟

)
. (1.180)

which we can rearrange into a Poisson equation for 𝜓:



DuctAPE Theory 50

𝜔𝜃 =
1

𝜌𝑟

(
𝜕2𝜓

𝜕𝑧2

+ 𝜕2𝜓

𝜕𝑟2

)
+ 𝜕𝜓

𝜕𝑧

𝜕

𝜕𝑧

(
1

𝜌𝑟

)
+ 𝜕𝜓

𝜕𝑟

𝜕

𝜕𝑟

(
1

𝜌𝑟

)
𝜔𝜃 =

1

𝜌𝑟

(
𝜕2𝜓

𝜕𝑧2

+ 𝜕2𝜓

𝜕𝑟2

)
− 𝜌𝑟𝐶𝑟

𝜕

𝜕𝑧

(
1

𝜌𝑟

)
+ 𝜌𝑟𝐶𝑧

𝜕

𝜕𝑟

(
1

𝜌𝑟

)
(sub in equation (1.178))

𝜌𝑟𝜔𝜃 =
𝜕2𝜓

𝜕𝑧2

+ 𝜕2𝜓

𝜕𝑟2

− 𝜌2𝑟2𝐶𝑟
𝜕

𝜕𝑧

(
1

𝜌𝑟

)
+ 𝜌2𝑟2𝐶𝑧

𝜕

𝜕𝑟

(
1

𝜌𝑟

)
(remove fraction)

𝜌𝑟𝜔𝜃 =
𝜕2𝜓

𝜕𝑧2

+ 𝜕2𝜓

𝜕𝑟2

− 𝜌2𝑟2𝐶𝑟

��
�
�
�>

0

1

𝜌
𝜕

𝜕𝑧

(
1

𝑟

)
+ 1

𝑟

𝜕

𝜕𝑧

(
1

𝜌

)
+ 𝜌2𝑟2𝐶𝑧

[
1

𝜌
𝜕

𝜕𝑟

(
1

𝑟

)
+ 1

𝑟

𝜕

𝜕𝑟

(
1

𝜌

)]
(product rule)

𝜌𝑟𝜔𝜃 =
𝜕2𝜓

𝜕𝑧2

+ 𝜕2𝜓

𝜕𝑟2

− 𝜌2𝑟2𝐶𝑟
−1

𝜌2𝑟

𝜕𝜌𝑧
𝜕𝑧

+ 𝜌2𝑟2𝐶𝑧

(
−1

𝜌𝑟2

+ −1

𝜌2𝑟

𝜕𝜌𝑟
𝜕𝑟

)
(take derivatives)

𝜌𝑟𝜔𝜃 =
𝜕2𝜓

𝜕𝑧2

+ 𝜕2𝜓

𝜕𝑟2

− 𝑟𝐶𝑟
𝜕𝜌𝑧
𝜕𝑧

+ 𝑟𝐶𝑧
𝜕𝜌𝑟
𝜕𝑟

− 𝜌𝐶𝑧 (simplify)

𝜌𝑟𝜔𝜃 =∇2𝝍 + 𝑟
(
𝑪𝑚 × ∇𝜌

)
𝒆̂𝜃 − 𝜌𝐶𝑧 (condense)

𝜌𝑟𝜔𝜃 =∇2𝝍 + 𝑟
(
𝑪𝑚 × ∇𝜌

)
𝒆̂𝜃 − 1

𝑟

𝜕𝜓

𝜕𝑟
(sub in equation (1.178))

∇2𝝍 =
1

𝑟

𝜕𝜓

𝜕𝑟
− 𝑟

(
𝑪𝑚 × ∇𝜌

)
𝒆̂𝜃 + 𝜌𝑟𝜔𝜃 . (rearrange)

(1.181)

We do not know what the value is for 𝜔𝜃 immediately, so we will

find an expression for it using terms we do have. For an ideal, calorically

perfect gas, the Crocco relation applied to our axisymmetric, steady flow

in terms of total pressure is
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ad
Remembering that 𝝎 = ∇ × 𝑪.

ae
remembering that

𝜕𝐴
𝜕𝑛 = 1

2𝐴
𝜕𝐴2

𝜕𝑛

𝑪 × 𝝎 = 𝑣∇𝑝̃𝑡

𝑪 × 𝝎 =
1

𝜌
∇𝑝̃𝑡 (definition of specific volume)

𝑪 × 𝝎 ≃ 1

𝜌
∇

[
𝜌

(
ℎ̃ − 𝑆

)]
(apply equation (1.157))

𝑪 × 𝝎 ≃ ∇
(
ℎ̃ − 𝑆

)
(incompressible)

𝑪 × 𝝎 ≃ ∇ℎ̃ − ∇𝑆 (distributive property)

𝐶𝑚𝜔𝜃 − 𝐶𝜃𝜔𝑚 ≃ ∇ℎ̃ − ∇𝑆 (expand LHS)

(1.182)

where we have defined 𝐶𝜃 in equation (1.124) as

𝐶𝜃 =
Γ̃

2𝜋𝑟
; (1.124)

and the 𝜔𝑚 component of vorticity is defined as
ad

𝜔𝑚 = −1

𝑟

𝜕(𝑟𝐶𝜃)
𝜕𝑛

= − 1

2𝜋𝑟
𝜕Γ̃

𝜕𝑛
. (plug in equation (1.124))

(1.183)

Thus
ae

𝐶𝜃𝜔𝑚 ≃ − Γ̃

(2𝜋𝑟)2
𝜕Γ̃

𝜕𝑛

≃ −1

2

(
1

2𝜋𝑟

)
2

𝜕(Γ̃2)
𝜕𝑛

,

(1.184)

which we can substitute back into equation (1.182) to get an expression

for 𝜔𝜃

𝜔𝜃 =

− 1

2

(
1

2𝜋𝑟

)
2 ∇

(
Γ̃2

)
+ ∇ℎ̃ − ∇𝑆

𝐶𝑚
. (1.185)

We can now replace the 𝜔𝜃 term in equation (1.181) to get a Poisson

equation solely in terms that are part of our solution system:

∇2𝝍 =
1

𝑟

𝜕𝜓

𝜕𝑟
− 𝑟

(
𝑪𝑚 × ∇𝜌

)
𝒆̂𝜃 + 𝜌𝑟

− 1

2

(
1

2𝜋𝑟

)
2 ∇

(
Γ̃2

)
+ ∇ℎ̃ − ∇𝑆

𝐶𝑚
. (1.186)

We also now take advantage of assumption 1.12 to eliminate the density

dilation term, leaving us with

∇2𝝍 =
1

𝑟

𝜕𝜓

𝜕𝑟
+ 𝜌𝑟

𝐶𝑚

(
−1

2

(
1

2𝜋𝑟

)
2

∇
(
Γ̃2

)
+ ∇ℎ̃ − ∇𝑆

)
. (1.187)
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af
We change our notation style for partial

derivatives here as it proves to be easier

to read due to the shear number of deriva-

tives in this section.

We may also express this Poisson equation as

∇2𝝍 = 𝑄0 +𝑄1 (1.188)

where

𝑄0 =
𝜓𝑟
𝑟

(1.189)

𝑄1 =
𝜌𝑟

𝐶2

𝑚

[
− 1

2

(
1

2𝜋𝑟

)
2

𝑪𝑚 × ∇
(
Γ̃2

)
+ 𝑪𝑚 × ∇ℎ̃ − 𝑪𝑚 × ∇𝑆

]
𝒆̂𝜃

(1.190)

The 𝑄0 term is a result of the axisymmetry of the problem. The three

terms of the source term, 𝑄1, are first, the transverse circulation gradi-

ent, second, the transverse work gradient, and last, the transverse loss

gradient.

Elliptic Wake Grid
We are now ready to generate the solution grid, parametrically defined

from our global coordinates through Poisson equations:
af

𝜉(𝑧, 𝑟) ≡ ∇2𝜉 = 𝜉𝑧𝑧 + 𝜉𝑟𝑟 = 𝑃 (1.191)

𝜂(𝑧, 𝑟) ≡ ∇2𝜂 = 𝜂𝑧𝑧 + 𝜂𝑟𝑟 = 𝑄. (1.192)

where 𝜂 = constant along streamlines (thus 𝜂 coordinates correspond

to the physical location of streamlines) and 𝜉 is constant along radial

lines as seen in figure 1.23. With 𝜂 corresponding to streamlines, it

makes sense to set equation (1.192) equal to equation (1.188), such that

𝜓 = 𝜂 and 𝑄 = 𝑄0 +𝑄1. Since the 𝜉 values are arbitrary, we may as well

set 𝑃 = 0 which allows 𝜉 to be arbitrarily chosen. Note that we don’t

have the information available for source term, 𝑄1, before solving, so for

initialization we simply set it to zero. Later, after the non-linear solve,

we may choose to update the grid and re-solve.

𝜉

𝜂

Figure 1.23: Elliptic grid coordinate system showing lines of constant 𝜂 (blue) coinciding

with streamlines, and lines of constant 𝜉 (red) are constant relative to change in radius

when the 𝑧-coordinates of the upper and lower boundaries are aligned.
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In order to solve for the specific (𝜉, 𝜂) coordinates, we need to invert

the dependent and independent variables in equations (1.191) and (1.192).

In order to do so, we use the following derivative transformations:

𝑓𝑧 =
𝑟𝜂 𝑓𝜉 − 𝑟𝜉 𝑓𝜂

𝐽
(1.193)

𝑓𝑟 =
−𝑧𝜂 𝑓𝜉 + 𝑧𝜉 𝑓𝜂

𝐽
(1.194)

where 𝐽 = 𝑧𝜉𝑟𝜂 − 𝑧𝜂𝑟𝜉.

The details of the inversion are included in section 1.E. After the

inversion, we are left with expressions for 𝑧 and 𝑟 with respect to 𝜉 and

𝜂.

𝛼𝑧𝜉𝜉 − 2𝛽𝑧𝜉𝜂 + 𝛾𝑧𝜂𝜂 =
𝐽

𝑟
𝑧𝜂𝑧𝜉 (1.195)

𝛼𝑟𝜉𝜉 − 2𝛽𝑟𝜉𝜂 + 𝛾𝑟𝜂𝜂 =
𝐽

𝑟
𝑧𝜂𝑟𝜉 (1.196)

or equivalently in terms of 𝛼, 𝛽, 𝛾 only:

𝛼𝑧𝜉𝜉 − 2𝛽𝑧𝜉𝜂 +
𝛾

𝑟

(
𝑟𝑧𝜂

)
𝜂 −

𝛽

𝑟
𝑟𝜉𝑧𝜂 = 0

𝛼𝑟𝜉𝜉 − 2𝛽𝑟𝜉𝜂 +
𝛾

𝑟

(
𝑟𝑟𝜂

)
𝜂 −

𝛽

𝑟
𝑟𝜉𝑟𝜂 = 0

(1.197)

where

𝛼 = 𝑧2

𝜂 + 𝑟2

𝜂 (1.198)

𝛽 = 𝑧𝜉𝑧𝜂 + 𝑟𝜉𝑟𝜂 (1.199)

𝛾 = 𝑧2

𝜉 + 𝑟2

𝜉 (1.200)

𝐽 = 𝑧𝜉𝑟𝜂 − 𝑧𝜂𝑟𝜉 (1.201)

We can obtain expressions for the velocity in terms of 𝑧 and 𝑟 if we

take the differential identities of the transformations

[
𝑧𝜉 𝑧𝜂
𝑟𝜉 𝑟𝜂

] (
𝑑𝜉
𝑑𝜂

)
=

(
𝑑𝑧

𝑑𝑟

)
(1.202)[

𝜉𝑧 𝜉𝑟
𝜂𝑧 𝜂𝑟

] (
𝑑𝑧

𝑑𝑟

)
=

(
𝑑𝜉
𝑑𝜂

)
(1.203)

and invert one, say equation (1.202),(
𝑑𝜉
𝑑𝜂

)
=

1

𝐽

[
𝑟𝜂 −𝑧𝜂
−𝑟𝜉 𝑧𝜉

] (
𝑑𝑧

𝑑𝑟

)
(1.204)



DuctAPE Theory 54

ag
This is a Dirichlet boundary condition.

ah
This is a Neumann boundary condition.

then set them equal to each other[
𝜉𝑧 𝜉𝑟
𝜂𝑧 𝜂𝑟

] (
𝑑𝑧

𝑑𝑟

)
=

1

𝐽

[
𝑟𝜂 −𝑧𝜂
−𝑟𝜉 𝑧𝜉

] (
𝑑𝑧

𝑑𝑟

)
(1.205)

we see that

𝜉𝑧 =
𝑟𝜂

𝐽
(1.206)

𝜉𝑟 =
−𝑧𝜂
𝐽

(1.207)

𝜂𝑧 =
−𝑟𝜉
𝐽

(1.208)

𝜂𝑟 =
𝑧𝜉

𝐽
. (1.209)

Thus the velocities can be computed from equation (1.178) as

𝐶𝑧 =
1

𝜌𝑟

𝑑𝜓

𝑑𝑟
=

𝜂𝑟
𝜌𝑟

=
𝑧𝜉

𝜌𝑟𝐽
(1.210)

𝐶𝑟 =
−1

𝜌𝑟

𝑑𝜓

𝑑𝑥
=

−𝜂𝑧
𝜌𝑟

=
𝑧𝜉

𝜌𝑟𝐽
. (1.211)

We can now solve for the 𝑧 and 𝑟 grid node positions by assigning

𝜉 and 𝜂 values to each grid line, and solving equation (1.197) using the

boundary conditions of fixed geometry (𝑧, 𝑟 positions) on solid walls and

the inlet plane
ag

, and fixed velocity magnitude (𝐶2

𝑧 + 𝐶2

𝑟 ) on streamlines

and the outlet plane
ah

.

One final consideration is the end of the wake. By Helmholtz‘

theorems, we cannot just have the vortex filaments of the wake (smeared

or otherwise) simply end. On the rotor blades, we have lines of circulation

[(reference one of the figures)] from which the wake filaments are shed

(as would be expected from a lifting line method). We have not, however,

defined those shed wake filaments to be semi-infinite, but rather to be

discretized into smeared vortex panels. Therefore we need to either

extend them to infinity, or “close the loop;” we choose the latter. At

the end of each wake element, we add a panel similar to the trailing

edge panels for the centerbody, which extends from the last wake node

along the streamline to the axis of rotation. In contrast to the centerbody

trailing edge panel, we only apply the vorticity portion of the wake panel

strength based on the last wake node along the streamline.

1.3.5 Verification and Validation of Isolated Rotor+Wake
Aerodynamics

Verification of Induced Velocities
To verify that the rotor and wake models are behaving as expected, we

look at the induced velocities (axial and swirl) at locations ranging from

upstream of the rotor to downstream of the rotor. We compare to blade
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element momentum theory (BEMT) using the CCBlade.jl Julia package.

The rotor we use for comparison is the APC 10x5 propeller; geometry

for which is provided in the CCBlade documentation and in the UIUC

database. Figure 1.24 shows the near- and far-field values from BEMT

compared to the DuctAPE values across the range of locations sampled.

We see that the general trends match well: the upstream velocities are at

or near zero, and the far field velocities are approximately double the

velocities at the rotor plane. Note that the swirl velocity as modeled in

DuctAPE is zero upstream of the rotor, and the far-field value at any

point aft of the rotor as described by equations (1.124) and (1.125).

0.2 0.4 0.6 0.8
−2

0

2

4

6

𝑟/𝑅

𝑣𝑥

(a) Axial Velocity (𝑣𝑥)

0.2 0.4 0.6 0.8

−0.5

0.0

0.5

1.0

1.5

2.0

Upstream

At Rotor Plane

Downstream

𝑟/𝑅

𝑣𝜃

DuctAPE

BEMT

(b) Swirl Velocity (𝑣𝜃)

Figure 1.24: Comparison of induced velocities from BEMT near and far field with

induced velocities from DuctAPE sample at a range from one diameter upstream (gray)

to the rotor plane (blue) and from the rotor plane to one diameter downstream (red).

Validation of Thrust and Power Coefficients
For one validation case, we compare the thrust and power coefficients as

well as efficiency with experimental data provided by UIUC for the APC

10x5. We also compare to the BEMT outputs for further context. As can

be seen in figure 1.25, DuctAPE matches well with BEMT, and both are

within expectations when compared to experimental data.

1.4 Post-Processing
After we have solved the non-linear system for unknown body, rotor,

and wake strengths, we need to perform some post-processing in order

to assess useful outputs such as thrust, torque, power, efficiency, blade

loading, etc. This section covers the methodology for calculating desired

outputs.

1.4.1 Body Thrust
The body thrust is the sum of forces on the bodies and may augment the

total system thrust and therefore efficiency. Due to assumption 1.1, the

net radial pressure forces on the body cancel; we also assume there are

no tangential forces induced due to the bodies. We therefore sum the
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0.1 0.2 0.3 0.4 0.5 0.6

0.02

0.04

0.06

0.08

𝐶𝑇

𝐶𝑃

Advance Ratio (𝐽)

(a) Comparison of rotor power (𝐶𝑃) and

thrust (𝐶𝑇 ) coefficients.

0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.2

0.4

0.6

0.8

1.0

Advance Ratio (𝐽)

𝜂

DuctAPE

BEMT

UIUC

(b) Comparison of rotor efficiency (𝜂).

Figure 1.25: A comparison of rotor performance metrics across a range of advance ratios

(𝐽) shows good agreement between DuctAPE, BEMT, and experimental data.

forces due to pressure in the axial direction to obtain thrust due to the

bodies.

𝑇bod =
1

2

𝜌∞𝑉
2

ref
𝑓𝑧 (1.212)

where the non-dimensional force coefficient, 𝑓𝑧 , is the integral of the

pressure force coefficient in the axial direction about the body surfaces:

𝑓𝑧 =

𝑁𝑏∑
𝑖=1

2𝜋

∫
𝑆𝑖

𝑟(𝑠𝑖)(𝑐𝑝out
− 𝑐𝑝in

)(𝑠𝑖)𝒏̂𝑧(𝑠𝑖)d𝑠𝑖 . (1.213)

In the case of a blunt trailing edge, the trailing edge gap panel is also

included in the integral for the total axial force coefficient, though the

pressure coefficient values used in that case are simply the average of the

adjoining panels in the duct case, and the last panel in the center body

case. Since the trailing edge gap panels are in general pointing in the

positive axial direction, this provides a rough approximation of profile

drag due to the blunt trailing edges.

Note that in equation (1.213) we integrate the difference in surface

pressure between the outer and inner sides of the body surface. This

is due to the fact that there is a non-zero induced velocity on the inner

side of the body boundaries as mentioned in section 1.2.3. To obtain

the thrust due to a pressure difference, then, we require to net pressure

induced on the body surfaces rather than just the externally induced

surface pressure. Internally, there is no additional effects on the surface

pressure by the rotor and wake. Externally however, there is a jump in

pressure aft of the rotor(s) inside the duct.

Aft of the rotor plane(s), the pressure coefficient changes due to the

enthalpy and entropy jumps across the rotor plane as well as the addition
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of swirl velocity. Remembering equation (1.157) we see that the steady

state pressure coefficient changes due to the disk jumps as

Δ𝑐𝑝ℎ𝑠 =
𝑝𝑡

1

2
𝜌𝑉2

ref

=

𝜌
(
ℎ̃ − 𝑆

)
1

2
𝜌𝑉2

ref

=
ℎ̃ − 𝑆
1

2
𝑉2

ref

(1.214)

The pressure is also altered by the addition of swirl velocity due to the

rotor. We treat this in the same manner as we do for the nominal, steady

pressure coefficient based on the surface velocity. For the nominal case,

we only look at the velocity in the axial and radial directions, obtaining

the velocity tangent to the body surfaces. The pressure coefficient, is

given by

𝑐𝑝 =
𝑝 − 𝑝∞
1

2
𝜌𝑉2

ref

(1.215)

By assumption 1.3, we can apply Bernoulli’s equation

𝑝∞ + 1

2

𝜌𝑉2

∞ = 𝑝 + 1

2

𝜌𝑉2

tan
(1.216)

𝑝 − 𝑝∞ =
1

2

𝜌𝑉2

∞ − 1

2

𝜌𝑉2

tan
(1.217)

where𝑉tan is the velocity tangent to the body surface, and substitute into

the numerator and cancel to obtain

𝑐𝑝 =
𝑉2

∞ −𝑉2

tan

𝑉2

ref

(1.218)

Aft of the rotor, inside the duct, and on the outer side of the body surfaces

𝑉tan contains a swirl component that is not present upstream of the rotor.

Since the 𝑉𝜃∞ = 0, the change in pressure coefficient aft of the rotor due

to the addition of swirl velocity is simply

Δ𝑐𝑝𝜃 = −
𝑉2

𝜃

𝑉2

ref

(1.219)

All together the outer surface pressure coefficient rise aft of a rotor is

then:

Δ𝑐𝑝 = Δ𝑐𝑝ℎ𝑠 + Δ𝑐𝑝𝜃

=
2(ℎ̃ − 𝑆) −𝑉2

𝜃

𝑉2

ref

.
(1.220)
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ai
It is these forces that are used in an

aerostructural analysis and optimization

setting.

1.4.2 Rotor Performance
Blade Loading
Rotor performance calculation begins with determining the blade element

aerodynamic loads. To obtain the loads in the axial and tangential

direction, we start with the lift and drag coefficients for the blade

elements, calculated as explained in section 1.3.2. The lift and drag

coefficients are then rotated into the axial and tangential directions using

the inflow angle, 𝛽1:

𝑐𝑧 = 𝑐ℓ cos(𝛽1) − 𝑐𝑑 sin(𝛽1) (1.221)

𝑐𝜃 = 𝑐ℓ sin(𝛽1) + 𝑐𝑑 cos(𝛽1), (1.222)

where 𝑐𝑧 is the force coefficient in the axial direction, and 𝑐𝜃 is the force

coefficient in the tangential direction. We then multiply by the chord

length to scale the force and dimensionalize to obtain the forces per unit

length:
ai

𝑓𝑛 =
1

2

𝜌∞𝑊
2𝑐𝑐𝑧 (1.223)

𝑓𝑡 =
1

2

𝜌∞𝑊
2𝑐𝑐𝜃 . (1.224)

We can then integrate these forces per unit length across the blade and

multiply by the number of blades to obtain the full rotor thrust, 𝑇rot, and

torque, 𝑄, on the rotor.

𝑇rot = 𝐵

∫ 𝑅tip

𝑅
hub

𝑓𝑛d𝑟 (1.225)

𝑄 = 𝐵

∫ 𝑅tip

𝑅
hub

𝑓𝑡𝑟d𝑟 (1.226)

Power is related to torque by the rotation rate, Ω, and is therefore

immediately found as well:

𝑃 = 𝑄Ω. (1.227)

It is common to express the rotor thrust, torque and power as non-

dimensional coefficients. We use the propeller convention here. The

thrust coefficient, 𝐶𝑇 , is

𝐶𝑇 =
𝑇

𝜌∞𝑛2𝐷4

, (1.228)

where 𝑛 = Ω/2𝜋 is the rotation rate in revolutions per second and

𝐷 = 2𝑅tip is the rotor tip diameter. The torque coefficient, 𝐶𝑄 , is

𝐶𝑄 =
𝑄

𝜌∞𝑛2𝐷5

, (1.229)
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and the power coefficient, 𝐶𝑃 , is

𝐶𝑃 = 𝐶𝑄Ω (1.230)

Efficiency
The rotor efficiency is the ratio of the thrust to power multiplied by the

freestream velocity.

𝜂rot =
𝑇rot

𝑃
𝑉∞. (1.231)

To obtain the total system efficiency, we simply add the body thrust to

the rotor thrust.

𝜂tot =
𝑇tot

𝑃
𝑉∞. (1.232)

where

𝑇tot = 𝑇rot + 𝑇bod (1.233)

The ideal efficiency is useful for comparing the actual efficiency with the

theoretical potential and is defined as

𝜂ideal =
2

1 +
[

1+𝑇tot

1

2
𝜌∞𝑉2

∞𝜋𝑅2

ref

]
1/2

. (1.234)

1.5 Verification of Full Solver Implementations in DuctAPE
As we have established, the methodology behind DuctAPE is based

heavily on DFDC. Therefore, we take the opportunity to provide a set of

comparisons between DuctAPE and DFDC. We compared an example

available in the DFDC source code using a single ducted rotor across

a range of operating conditions, specifically across a range of advance

ratios including a hover condition.

The geometry used in the single ducted rotor example case is shown

in figure 1.27. For this verification case, we used a rotor with tip radius

of 0.15572 meters located 0.12 meters aft of the center body leading edge.

The wake extended 0.8 times the length of the duct (roughly 0.3 meters)

past the duct trailing edge. We used 10 blade elements associated with 11

wake sheets to model the rotor. We set the rotor rotation rate constant at

8000 revolutions per minute and adjust the freestream velocity in order

to sweep across advance ratios from 0.0 to 2.0 by increments of 0.1. We

assumed sea level conditions for reference values.

We note here that DuctAPE also differs from DFDC in the geometry

re-paneling approach. The reason for a different approach to geometry

generation in DuctAPE is so that the duct, center body, and wake can

be paneled in such a way to avoid discontinuities in gradients if the

relative position of the rotors, duct, and center body were to change in an

optimization setting. Comparing the subfigures of figure 1.27 we see two
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Figure 1.26: Single rotor verification case geometry generated by DuctAPE. Duct

geometry in blue, center body geometry in red, rotor lifting line location in green, and

wake grid geometry in gray.
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(a) DFDC generated geometry.
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(b) DuctAPE generated geometry.

Figure 1.27: Single rotor verification case geometry as generated by DFDC and DuctAPE.

Duct geometry in blue, center body geometry in red, rotor lifting line location in green,

and wake grid geometry in gray.

major differences between the DFDC generated geometry (figure 1.27(a))

and the DuctAPE generated geometry (figure 1.27(b)). The DuctAPE

geometry re-paneling approach aligns the duct, center body, and wake

panels aft of the rotor and distributes them linearly. We align the panels
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so that there is a consistent number of panels between discrete locations

(such as rotor positions and body trailing edges) in the geometry, thereby

avoiding discontinuities. For example, the number of center body and

duct panels ahead of and behind the rotor need to stay constant if the

rotor position is selected as a design variable in an optimization. Without

the number of panels ahead of and behind the rotor staying constant,

there would be discontinuities as the rotor passed over panels along

the solid bodies. The second difference in geometries is that DuctAPE

does not yet apply any expansion in the wake panel length aft of the

duct exit. The main reason to apply expansion is to reduce the number

of panels in the wake, and thereby reduce the size of the system being

solved. Also note that the number of panels in the wake needs to stay

constant between each discrete location, even aft of the duct exit, in case

the duct chord length is selected as a design variable in an optimization.

One additional difference, not visible, is that the duct and center body

geometries are defined counter-clockwise for DFDC and clockwise for

DuctAPE, which simply led to some differences in sign (compared to

the DFDC implementation) in the various induced velocity equations

presented above.

As we are comparing the performance of solvers using the DFDC-like

CSOR approach and our alternate approach, we verify here that both

implementations match values from the original Fortran implementation

of DFDC. Scanning Tables 1.1 and 1.2, we see that the differences between

DFDC and both approaches implemented in DuctAPE are less than 0.5%

for major output values for both a hover and a cruise case. Figure 1.29

shows comparisons of total thrust and power coefficients (figure 1.29(a))

and total efficiency (figure 1.29(b)), across the range of advance ratios,

showing excellent matching across the entire range. Note that the

results for both the DFDC-like solver and alternate DuctAPE solver yield

identical plots, so we include only one here.

Table 1.1: Comparison of solver outputs for hover case (𝐽 = 0.0). Errors relative to DFDC.

Output Value DFDC CSOR % Error

Rotor Thrust (N) 91.8 91.82 0.03

Body Thrust (N) 106.45 106.96 0.48

Torque (N·m) 6.58 6.58 0.04

Output Value DFDC Alternate % Error

Rotor Thrust (N) 91.8 91.82 0.02

Body Thrust (N) 106.45 106.95 0.47

Torque (N·m) 6.58 6.58 0.04

1.5.1 Benchmarking Solver Implementations
Now that we have shown that both solve approaches yield nearly iden-

tical results, we show a comparison in solver efficiency. To do so, we

benchmarked various solvers against the CSOR solver. Included in our

comparison are the following external solvers:
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Table 1.2: Comparison of solver outputs for a cruise case (𝐽 = 1.0). Errors relative to

DFDC.

Output Value DFDC CSOR % Error

Rotor Thrust (N) 70.0 70.19 0.27

Body Thrust (N) 6.99 6.95 -0.43

Torque (N·m) 5.5 5.52 0.3

Rotor Efficiency 0.63 0.63 0.09

Total Efficiency 0.69 0.69 0.02

Output Value DFDC Alternate % Error

Rotor Thrust (N) 70.0 70.19 0.27

Body Thrust (N) 6.99 6.95 -0.47

Torque (N·m) 5.5 5.52 0.3

Rotor Efficiency 0.63 0.63 0.09

Total Efficiency 0.69 0.69 0.02

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

𝐶𝑇

𝐶𝑃

Advance Ratio

(
𝑉∞
𝑛𝐷

)
(a) Power and thrust comparison.

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

Advance Ratio

(
𝑉∞
𝑛𝐷

)
𝜂

(b) Efficiency comparison.

Figure 1.28: Comparison of power and thrust coefficients and efficiency for DFDC

(dashed) and the DuctAPE implementations (solid) across a range of advance ratios.
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(a) Power and Thrust Comparison.
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(b) Efficiency comparison.

Figure 1.29: Comparison of power and thrust coefficients and efficiency for DFDC

(dashed) and DuctAPE (solid) across a range of advance ratios.

11 Mogensen et al.,
JuliaNLSolvers/NLsolve.jl: v4.5.1, 2020.

12 Walker et al., “Anderson Acceleration

for Fixed-Point Iterations,” 2011.

• Fixed-point Solvers

– NLsolve’s
11

Anderson accelerated fixed-point method
12

.

– SpeedMapping.jl
a

which uses an alternating cyclic extrapola-

https://dx.doi.org/10.1137/10078356X
https://dx.doi.org/10.1137/10078356X
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a
https://github.com/NicolasL-S/

SpeedMapping.jl

13 Lepage-Saucier, Alternating cyclic
extrapolation methods for optimization
algorithms, 2021.

b
https://github.com/

francescoalemanno/FixedPoint.jl

14 D., “A hybrid method for nonlinear

equations,” 1970.

c
https://www.netlib.org/minpack/

d
https:

//github.com/sglyon/MINPACK.jl

15 Moré et al., “Line search algorithms

with guaranteed sufficient decrease,”

1994.

e
https://github.com/JuliaNLSolvers/

LineSearches.jl

f
https://github.com/SciML/

SimpleNonlinearSolve.jl

16 Pal et al., “NonlinearSolve. jl:

High-Performance and Robust Solvers for

Systems of Nonlinear Equations in Julia,”

2024.

g
https://github.com/JuliaCI/

BenchmarkTools.jl

tion algorithm
13

.

– Fixedpoint.jl
b

which is a Nesterov accelerated fixed-point

method.

• Quasi-Newton Solvers

– The modified Powell Method
14

implemented in MINPACK’s

HYBRJ method,
c

accessed through the Julia wrapper package,

MINPACK.jl
d

which wraps a C++ re-write of MINPACK.

• Newton Solvers

– NLsolve’s Newton method using automatic differentiation

for the Jacobian calculation and the Moré-Thuente line search

method
15

option available through the LineSearches.jl
e

pack-

age.

– The Newton-Raphson method implemented in the SimpleNon-

linearSolve.jl package
f 16

.

Other than those specifically noted in this list, all solvers were set to use

their default settings and given absolute convergence tolerances of 1e-12.

To perform the benchmarks, we used the same geometry and op-

erating points used in section 1.5. For each advance ratio, we used

BenchmarkTools.jl
g
, a benchmarking package in the Julia language, to

run 200 samples, then calculated the median computational time across

all samples and all advance ratios. We allowed the fixed-point solvers an

iteration limit of 1000, the quasi-Newton solvers an iteration limit of 100,

and the Newton solvers an iteration limit of 25. These iteration limits

were sufficiently large that all solvers were able to converged on every

analysis. We also ran each advance ratio one additional time, saving the

solve iteration counts and taking the mean number of iterations across

the advance ratios in order to determine solver efficiency.

Table 1.3 includes comparisons of the median solve times and mean

number of iterations across all advance ratios for each of the benchmarked

solvers. From Table 1.3, we first see that the default DFDC-like CSOR

solve approach with loose, relative tolerances was very fast and efficient.

We should expect this as the default convergence criteria is between

1e-3 and 2e-4, depending on the residual value. In contrast, all other

solvers were given an absolute convergence tolerance of 1e-12, including

the CSOR solver with absolute convergence criteria. Therefore, for

tight, absolute tolerances, an Anderson accelerated fixed-point solver

may be considered in favor of the CSOR solver if speed is the absolute

priority, though a much broader set of benchmarks would need to be run

before making that a general recommendation. In addition, selecting

non-default options for the various solvers may lead to increases in speed

or efficiency, again requiring a broader set of benchmarks before general

recommendations can be made. That being said, based on these results,

further exploration is worth pursuing.

https://github.com/NicolasL-S/SpeedMapping.jl
https://github.com/NicolasL-S/SpeedMapping.jl
https://github.com/francescoalemanno/FixedPoint.jl
https://github.com/francescoalemanno/FixedPoint.jl
https://https://cir.nii.ac.jp/crid/1571135650078362496
https://https://cir.nii.ac.jp/crid/1571135650078362496
https://www.netlib.org/minpack/
https://github.com/sglyon/MINPACK.jl
https://github.com/sglyon/MINPACK.jl
https://dx.doi.org/10.1145/192115.192132
https://dx.doi.org/10.1145/192115.192132
https://github.com/JuliaNLSolvers/LineSearches.jl
https://github.com/JuliaNLSolvers/LineSearches.jl
https://github.com/SciML/SimpleNonlinearSolve.jl
https://github.com/SciML/SimpleNonlinearSolve.jl
https://github.com/JuliaCI/BenchmarkTools.jl
https://github.com/JuliaCI/BenchmarkTools.jl
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Table 1.3: Comparison of benchmarked solver method median times and mean iterations.

Blue indicates fixed-point solvers, red indicates quasi-Newton solvers, and green indicates

Newton solvers. In all cases, except for CSOR Default, the solvers were given absolute

convergence criteria of 1e-12. (Note that the SimpleNonlinearSolve.jl package does not

have any iteration tracing functionality and so that information is missing from this

table.)

Method Median Time

(seconds)

Mean

Iterations

CSOR Default 0.0042 15.571

CSOR Absolute 0.0183 76.476

NLSolve’s Anderson Acceleration 0.0097 36.429

SpeedMapping.jl 0.0300 139.333

FixedPoint.jl (Nesterov Acceleration) 0.1399 592.286

MINPACK’s HYBRJ 3.0528 14.238

SimpleNonlinearSolve’s Newton Raphson 10.7100 0.0

NLSolve’s Newton Method 22.0116 16.714

Another important result to notice here is the cost of computing the

Jacobian of the residual. Looking at the quasi- and full Newton methods,

we see several orders of magnitude increase in time, despite the lower

number of overall iterations. As expected, the Jacobian-based methods

are more efficient in iterations, but the cost to compute the Jacobian is so

high that it outweighs any inherent efficiency of the method.
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Chapter 1 Appendices
1.A Detailed derivation of vortex ring induced velocity
As mentioned at the end of section 1.2.4, in this section we go through

the somewhat tedious algebra required to take the partial derivatives of

the vector potential in order to obtain the induced velocity from a vortex

ring. We begin with the terms remaining in section 1.2.4:

𝑣𝑟 = −𝜕𝜓𝜃

𝜕𝑧
, (1.235)

𝑣𝑧 =
1

𝑟

𝜕(𝑟𝜓𝜃)
𝜕𝑟

. (1.236)

Now we need to take these partial derivatives to arrive at our final

expressions of induced velocity. Because our current vector potential

expressions are in terms of 𝑚 and normalized values, we will require

the application of the chain rule. Therefore it will be important to have

the expressions for the various partial derivatives along the way. The

derivative of the elliptic integral of the first kind with respect to 𝑚 is

𝜕𝒦(𝑚)
𝜕𝑚

=
ℰ(𝑚)

2𝑚(1 − 𝑚) −
𝒦(𝑚)

2𝑚
. (1.237)

The derivative of the elliptic integral of the second kind is

𝜕ℰ(𝑚)
𝜕𝑚

=
ℰ(𝑚)
2𝑚

− 𝒦(𝑚)
2𝑚

. (1.238)

The partial of 𝑚 with respect to 𝜉 is

𝜕𝑚

𝜕𝜉
= − 8𝜌𝜉(

(𝜌 + 1)2 + 𝜉2

)
2

. (1.239)

The partial of 𝜉 with respect to 𝑧 is

𝜕𝜉

𝜕𝑧
=

1

𝑟𝑜
. (1.240)

The partial of 𝑚 with respect to 𝜌 is

𝜕𝑚

𝜕𝜌
=

4

(
−𝜌2 + 𝜉2 + 1

)(
(𝜌 + 1)2 + 𝜉2

)
2

. (1.241)

The partial of 𝜌 with respect to 𝑟 is

𝜕𝜌

𝜕𝑟
=

1

𝑟𝑜
. (1.242)

Though simple to write symbolically, the overall derivatives become

very cumbersome. To keep things manageable, let us separate out the

expression for 𝜓𝜃 into the constant (𝒞 ), numerator (𝒩 ), and denominator

(𝒟) portions, respectively:
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𝒞 = −Γ

𝜋

𝒩 =
2

𝑚
ℰ(𝑚) − 2

𝑚
𝒦(𝑚) + 𝒦(𝑚)

𝒟 =
[
(𝜌 + 1)2 + 𝜉2

]
1/2

.

(1.243)

The partial of the numerator with respect to 𝑧 is

𝜕𝒩
𝜕𝑧

= − 𝜕𝑚

𝜕𝜉

𝜕𝜉

𝜕𝑧

[
𝒦(𝑚) + ℰ(𝑚)

𝑚2

− 3𝒦(𝑚)(𝑚 − 1) + ℰ(𝑚)
𝑚2(𝑚 − 1)

+ 𝒦(𝑚)(𝑚 − 1) + ℰ(𝑚)
2𝑚(𝑚 − 1)

]
.

(1.244)

The partial of the denominator with respect to 𝑧 is

𝜕𝒟
𝜕𝑧

=
𝜕𝜉

𝜕𝑧

𝜉
𝒟 =

𝜉
𝑟𝑜𝒟

. (1.245)

The partial of the numerator with respect to 𝑟 is

𝜕𝒩
𝜕𝑟

=
𝜕𝑚

𝜕𝜌

𝜕𝜌

𝜕𝑟

[
− 3ℰ(𝑚) + (𝑚 − 5)𝒦 (𝑚)

2𝑚(𝑚 − 1)

+ 2ℰ(𝑚) − 2𝒦(𝑚)
𝑚2(𝑚 − 1)

] (1.246)

The partial of the denominator with respect to 𝑟 is

𝜕𝒟
𝜕𝑟

=
𝜕𝜌

𝜕𝑟

𝜌 + 1

𝒟 =
𝜌 + 1

𝑟𝑜𝒟
. (1.247)

Putting things together for 𝑣𝑟 with the quotient rule gives

𝑣𝑟 = −𝜕𝜓𝜃

𝜕𝑧
= −𝒞

𝜕𝒩
𝜕𝑧 𝒟 −𝒩 𝜕𝒟

𝜕𝑧

𝒟2

. (1.248)

Putting things together for 𝑣𝑧 we start with the quotient rule, then apply

the product rule to arrive at

𝑣𝑧 =
1

𝑟

𝜕(𝑟𝜓𝜃)
𝜕𝑟

=
𝒞
𝑟

𝜕(𝒩 𝑟)
𝜕𝑟 𝒟 − (𝒩 𝑟) 𝜕𝒟𝜕𝑟

𝒟2

=𝒞

(
𝒩 + 𝑟 𝜕𝒩𝜕𝑟

)
𝒟 − (𝒩 𝑟) 𝜕𝒟𝜕𝑟
𝑟𝒟2

.

(1.249)
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Radially Induced Velocity Component
Now let’s see what we can do about simplifying these expressions. We’ll

start with equation (1.248). To get started, we’ll split up the fraction, and

expand out the partial of 𝒟,

𝑣𝑟 = −𝐶


𝜕𝒩
𝜕𝑧

𝒟︸︷︷︸
Term 1

− 𝒩𝜉

𝑟𝑜𝐷3︸︷︷︸
Term 2


(1.250)

We are going to look at each term in the brackets of equation (1.250)

separately first, then bring them together. We’ll start with Term 2.

Expanding gives

𝑁𝜉

𝑟𝑜𝐷3

=
𝜉

𝑟𝑜𝐷3

[
2

𝑚
ℰ(𝑚) +

(
1 − 2

𝑚

)
𝒦(𝑚)

]
(1.251)

Let us address the𝑚’s in the denominators by realizing that a comparison

of equations (1.79) and (1.243) indicates that

𝒟2 =
4𝜌

𝑚
. (1.252)

Making this replacement in equation (1.251) gives

𝑁𝜉

𝑟𝑜𝐷3

=
𝜉��𝑚

4𝜌𝑟𝑜𝐷

[
2

��𝑚
ℰ(𝑚) +

(
���
𝑚

1 − 2

��𝑚

)
𝒦(𝑚)

]
=

𝜉/𝜌
4𝑟𝑜𝐷

[2ℰ(𝑚) + (𝑚 − 2)𝒦 (𝑚)]
(1.253)

Now let’s look at Term 1 from equation (1.248). Expanding out gives

𝜕𝒩
𝜕𝑧

𝒟 =
8𝜌𝜉

𝑟𝑜𝐷
(
(𝜌 + 1)2 + 𝜉2

)
2

[
𝒦(𝑚) + ℰ(𝑚)

𝑚2

− 3𝒦(𝑚)(𝑚 − 1) + ℰ(𝑚)
𝑚2(𝑚 − 1)

+ 𝒦(𝑚)(𝑚 − 1) + ℰ(𝑚)
2𝑚(𝑚 − 1)

]
.

(1.254)

We can see right away that part of the fraction outside of the brackets

closely resembles the parameter 𝑚2
, all we’re missing is 2𝜌 in the

numerator, so we’ll multiply and divide by 2𝜌.

𝜕𝒩
𝜕𝑧

𝒟 =
(2𝜌)8𝜌𝜉

2𝜌𝑟𝑜𝐷
(
(𝜌 + 1)2 + 𝜉2

)
2

[
𝒦(𝑚) + ℰ(𝑚)

𝑚2

− 3𝒦(𝑚)(𝑚 − 1) + ℰ(𝑚)
𝑚2(𝑚 − 1)

+ 𝒦(𝑚)(𝑚 − 1) + ℰ(𝑚)
2𝑚(𝑚 − 1)

]
.

(1.255)
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which allows us to remove some of the 𝑚2
denominators inside the

brackets

𝜕𝒩
𝜕𝑧

𝒟 =
𝜉��𝑚2

2𝜌𝑟𝑜𝐷

[
𝒦(𝑚) + ℰ(𝑚)

��𝑚2

− 3𝒦(𝑚)(𝑚 − 1) + ℰ(𝑚)
��𝑚2(𝑚 − 1)

+ 𝑚(𝒦 (𝑚)(𝑚 − 1) + ℰ(𝑚))
2��𝑚(𝑚 − 1)

]
.

(1.256)

𝜕𝒩
𝜕𝑧

𝒟 =
𝜉/𝜌

2𝑟𝑜𝐷

[
𝒦(𝑚) + ℰ(𝑚)

− 3𝒦(𝑚)(𝑚 − 1) + ℰ(𝑚)
𝑚 − 1

+ 𝑚(𝒦 (𝑚)(𝑚 − 1) + ℰ(𝑚))
2(𝑚 − 1)

]
.

(1.257)

Splitting up the fractions inside the brackets will let us simplify further.

𝜕𝒩
𝜕𝑧

𝒟 =
𝜉/𝜌

2𝑟𝑜𝐷

[
𝒦(𝑚) + ℰ(𝑚)

− 3𝒦(𝑚)����(𝑚 − 1)
���𝑚 − 1

− ℰ(𝑚)
𝑚 − 1

+ 𝑚𝒦(𝑚)����(𝑚 − 1)
2����(𝑚 − 1) + 𝑚ℰ(𝑚)

2(𝑚 − 1)

]
.

(1.258)

𝜕𝒩
𝜕𝑧

𝒟 =
𝜉/𝜌

2𝑟𝑜𝐷

[
𝒦(𝑚) + ℰ(𝑚) − 3𝒦(𝑚) − 1

𝑚 − 1

ℰ(𝑚)

+ 𝑚

2

𝒦(𝑚) + 𝑚

2(𝑚 − 1)ℰ(𝑚)
]
.

(1.259)

Grouping like terms

𝜕𝒩
𝜕𝑧

𝒟 =
𝜉/𝜌

2𝑟𝑜𝐷

[ (
1 − 1

𝑚 − 1

+ 𝑚

2(𝑚 − 1)

)
ℰ(𝑚)

+
(
𝑚

2

− 2

)
𝒦(𝑚)

]
.

(1.260)

Simplifying the gathered terms for ℰ(𝑚)

𝜕𝒩
𝜕𝑧

𝒟 =
𝜉/𝜌

2𝑟𝑜𝐷

[ (
2(𝑚 − 1) − 2 + 𝑚

2(𝑚 − 1)

)
ℰ(𝑚)

−
(
𝑚

2

− 2

)
𝒦(𝑚)

]
.

(1.261)
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𝜕𝒩
𝜕𝑧

𝒟 =
𝜉/𝜌

2𝑟𝑜𝐷

[ (
3𝑚 − 4

2(𝑚 − 1)

)
ℰ(𝑚)

−
(
𝑚

2

− 2

)
𝒦(𝑚)

]
.

(1.262)

Multiplying and dividing by 2

𝜕𝒩
𝜕𝑧

𝒟 =
𝜉/𝜌

4𝑟𝑜𝐷

[(
3𝑚 − 4

𝑚 − 1

)
ℰ(𝑚) − (𝑚 − 4)𝒦 (𝑚)

]
. (1.263)

Noting that the fractions outside of the brackets are now the same for

both of the simplified expressions for Term 1 (see equation (1.263)) and

Term 2 (see equation (1.253), we’ll substitute the expression for Term 2 in

equation (1.253) and the expression for Term 1 in equation (1.263) back

in to equation (1.250).

𝜕𝒩
𝜕𝑧 𝒟 −𝒩 𝜕𝒟

𝜕𝑧

𝒟2

=
𝜉/𝜌

4𝑟𝑜𝐷

[(
3𝑚 − 4

𝑚 − 1

)
ℰ(𝑚) − (𝑚 − 4)𝒦 (𝑚)

]
− 𝜉/𝜌

4𝑟𝑜𝐷
[2ℰ(𝑚) + (𝑚 − 2)𝒦 (𝑚)] .

(1.264)

Let’s first look at just the difference of the 𝒦(𝑚) terms:

((𝑚 − 1) − (𝑚 − 2))𝐾 = (𝑚 − 4 − 𝑚 + 2)𝒦 (𝑚) = −2𝒦(𝑚) (1.265)

Now just looking at the ℰ(𝑚) terms:

(
3𝑚 − 4

𝑚 − 1

− 2

)
ℰ(𝑚)(

3𝑚 − 4 − 2(𝑚 − 1)
𝑚 − 1

)
ℰ(𝑚) (common denominators)(

3𝑚 − 4 − 2𝑚 + 2

𝑚 − 1

)
ℰ(𝑚) (expand)(

𝑚 − 2

𝑚 − 1

)
ℰ(𝑚) (simplify)

(1.266)

Applying the definition of 𝑚 in equation (1.79)
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(
4𝜌
𝒟2

− 2

4𝜌
𝒟2

− 1

)
ℰ(𝑚)

©­«
4𝜌−2𝒟2

��𝒟2

4𝜌−𝒟2

��𝒟2

ª®¬ℰ(𝑚) (common denominators)(
4𝜌 − 2𝒟2

4𝜌 −𝒟2

)
ℰ(𝑚) (divide)

2

(
2𝜌 −𝒟2

4𝜌 −𝒟2

)
ℰ(𝑚) (pull out a 2)

(1.267)

Expanding out the 𝒟 terms

2

(
2𝜌 − ((𝜌 + 1)2 + 𝜉2)
4𝜌 − ((𝜌 + 1)2 + 𝜉2)

)
ℰ(𝑚)

2

©­­«�
�2𝜌 − 𝜌2 −��2𝜌 − 1 − 𝜉2

���
2𝜌

4𝜌 − 𝜌2 −��2𝜌 − 1 − 𝜉2

ª®®¬ℰ(𝑚) (expand and cancel)

2

( −𝜌2 − 1 − 𝜉2

2𝜌 − 𝜌2 − 1 − 𝜉2

)
ℰ(𝑚)

−2

(−𝜌2 − 1 − 𝜉2

(𝜌 − 1)2 + 𝜉2

)
ℰ(𝑚) (multiply by -1 and simplify)

−2

(−𝜌2 − 1 − 𝜉2 + 2𝜌 − 2𝜌

(𝜌 − 1)2 + 𝜉2

)
ℰ(𝑚) (add and subtract 2𝜌)

2

( (𝜌 − 1)2 + 𝜉2 + 2𝜌

(𝜌 − 1)2 + 𝜉2

)
ℰ(𝑚) (consolidate numerator)

2

©­­«����
���*

1

(𝜌 − 1)2 + 𝜉2

(𝜌 − 1)2 + 𝜉2

+ 2𝜌

(𝜌 − 1)2 + 𝜉2

ª®®¬ℰ(𝑚) (split fraction and cancel)

2

(
1 + 2𝜌

𝜉2 + (𝜌 − 1)2

)
ℰ(𝑚)

(1.268)

Now putting the 𝒦(𝑚) terms from equation (1.265) and the ℰ(𝑚) terms

from equation (1.268) together in the difference, remembering the fraction

out front of both Term 1 and Term 2:

𝑣𝑟 = −𝒞

𝜉/𝜌

���
2

4𝒟𝑟𝑜

(
−�2𝒦(𝑚) + �2

[
1 + 2𝜌

𝜉2 + (𝜌 − 1)2

]
ℰ(𝑚)

) (1.269)

And finally expanding out 𝒞 and 𝒟 as well as some minor cleanup and

rearranging we have the expression presented in equation (1.88b):
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𝑣𝑟 = − Γ

2𝜋𝑟𝑜

𝜉/𝜌
[𝜉2 + (𝜌 + 1)2]1/2

(
𝒦(𝑚) −

[
1 + 2𝜌

𝜉2 + (𝜌 − 1)2

]
ℰ(𝑚)

)
(1.270)

Axially Induced Velocity Component
Next let’s simplify equation (1.249)

𝑣𝑧 = 𝒞


𝒩𝒟
𝑟𝒟2︸︷︷︸
Term 1

+
𝑟 𝜕𝒩𝜕𝑟 𝒟
𝑟𝐷2︸ ︷︷ ︸

Term 2

−
(𝒩 𝑟) 𝜕𝒟𝜕𝑟
𝑟𝒟2︸    ︷︷    ︸
Term 3


. (1.271)

We’ll first expand the partials. Term 1 has no partials to expand:

Term 1 =
𝒩𝒟
𝑟𝒟2

. (1.272)

Term 2 has several sets of partials to expand:

Term 2 =
𝑟𝒟
𝑟𝒟2

𝜕𝑚

𝜕𝜌

𝜕𝜌

𝜕𝑟

[
− 3ℰ(𝑚) + (𝑚 − 5)𝒦 (𝑚)

2𝑚(𝑚 − 1)

+ 2ℰ(𝑚) − 2𝒦(𝑚)
𝑚2(𝑚 − 1)

]
,

(1.273)

Term 2 =
𝑟𝒟
𝑟𝒟2

4(−𝜌2 + 𝜉2 + 1)
𝒟4

1

𝑟𝑜

[
− 3ℰ(𝑚) + (𝑚 − 5)𝒦 (𝑚)

2𝑚(𝑚 − 1)

+ 2ℰ(𝑚) − 2𝒦(𝑚)
𝑚2(𝑚 − 1)

]
.

(1.274)

Term 3 also has a couple sets of partials to expand:

Term 3 = − 𝒩 𝑟

𝑟𝒟2

𝜕𝜌

𝜕𝑟

𝜌 + 1

𝒟 , (1.275)

Term 3 = − 𝒩 𝑟

𝑟𝒟2

1

𝑟𝑜

𝜌 + 1

𝒟 . (1.276)

Next let’s expand out the 𝒩 ’s. For Term 1

Term 1 =
𝒟
𝑟𝒟2

[
2

𝑚
ℰ(𝑚) + 𝑚 − 2

𝑚
𝒦(𝑚)

]
. (1.277)

Term 2 is already expanded, but let us gather the ℰ(𝑚) and 𝒦(𝑚) terms.
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Term 2 =
𝑟𝒟
𝑟𝒟2

4(−𝜌2 + 𝜉2 + 1)
𝒟4

1

𝑟𝑜

[
− 3𝑚 − 4

2𝑚2(𝑚 − 1)ℰ(𝑚)

− (𝑚 − 4)(𝑚 − 1)
2𝑚2(𝑚 − 1) 𝒦 (𝑚)

]
.

(1.278)

For Term 3:

Term 3 = − 𝑟

𝑟𝒟2

1

𝑟𝑜

𝜌 + 1

𝒟

[
2

𝑚
ℰ(𝑚) + 𝑚 − 2

𝑚
𝒦(𝑚)

]
. (1.279)

In order to add the terms together, we require a common denominator.

Let us gather the multipliers of each of the terms to see what we’re

working with and decide what common denominator to choose.

Term 1 Multiplier =
𝒟

𝑟𝒟2𝑚
; (1.280)

Term 2 Multiplier =
4𝑟𝒟(−𝜌2 + 𝜉2 + 1)
2𝑟𝑟𝑜𝒟6𝑚2(𝑚 − 1) ; (1.281)

Term 3 Multiplier =
𝑟(𝜌 + 1)
𝑟𝑟𝑜𝒟3𝑚

. (1.282)

We may expect our final expression to look similar to the expression for

𝑣𝑟 , so we may want to make sure to keep a 𝑟𝑜𝐷 in the denominator as we

go forward. Therefore we’ll start by multiplying Term 1 by 𝑟𝑜/𝑟𝑜 :

Term 1 Multiplier =
𝒟𝑟𝑜

𝑟𝑟𝑜𝒟2𝑚
; (1.283)

Term 2 Multiplier =
4𝑟𝒟(−𝜌2 + 𝜉2 + 1)
2𝑟𝑟𝑜𝒟6𝑚2(𝑚 − 1) ; (1.284)

Term 3 Multiplier =
𝑟(𝜌 + 1)
𝑟𝑟𝑜𝒟3𝑚

. (1.285)

Term 2 seems to have some extraneous values, so let’s divide out the 2

and one of the 𝒟’s,

Term 1 Multiplier =
𝒟𝑟𝑜

𝑟𝑟𝑜𝒟2𝑚
; (1.286)

Term 2 Multiplier =
2𝑟(−𝜌2 + 𝜉2 + 1)
𝑟𝑟𝑜𝒟5𝑚2(𝑚 − 1) ; (1.287)

Term 3 Multiplier =
𝑟(𝜌 + 1)
𝑟𝑟𝑜𝒟3𝑚

. (1.288)

Now we just need to multiply the top and bottom of Term 1 by𝒟3𝑚(𝑚−1)
and the top and bottom of Term 3 by 𝒟2𝑚(𝑚 − 1) to get a common

denominator between the terms.
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Term 1 Multiplier =
𝑟𝑜𝒟4𝑚(𝑚 − 1)
𝑟𝑟𝑜𝒟5𝑚2(𝑚 − 1) ; (1.289)

Term 2 Multiplier =
2𝑟(−𝜌2 + 𝜉2 + 1)
𝑟𝑟𝑜𝒟5𝑚2(𝑚 − 1) ; (1.290)

Term 3 Multiplier =
𝑟(𝜌 + 1)𝒟2𝑚(𝑚 − 1)
𝑟𝑟𝑜𝒟5𝑚2(𝑚 − 1) . (1.291)

With a common denominator in place, we can start to add the various

terms together. Let us try to begin with the 𝒦(𝑚) terms:

𝒦(𝑚)
𝑟𝑟𝑜𝒟5𝑚2(𝑚 − 1)

[
𝑟𝑜𝒟4𝑚(𝑚 − 1)(𝑚 − 2) (from Term 1)

− 2𝑟(−𝜌2 + 𝜉2 + 1)(𝑚 − 4)(𝑚 − 1) (from Term 2)

− 𝑟(𝜌 + 1)𝒟2𝑚(𝑚 − 1)(𝑚 − 2)
]
. (from Term 3)

(1.292)

We see immediately that we can cancel out the (𝑚 − 1) from all the terms.

𝒦(𝑚)
𝑟𝑟𝑜𝒟5𝑚2

[
𝑟𝑜𝒟4𝑚(𝑚 − 2) (from Term 1)

− 2𝑟(−𝜌2 + 𝜉2 + 1)(𝑚 − 4) (from Term 2)

− 𝑟(𝜌 + 1)𝒟2𝑚(𝑚 − 2)
]
. (from Term 3)

(1.293)

Unfortunately, that appears to be the only obvious cancellation to make

right away. Perhaps expanding things out more will help. Let us expand

the 𝑚’s out next, remembering that 𝑚 = 4𝜌/𝒟2
.

𝒦(𝑚)��𝒟4

𝑟𝑟𝑜𝒟�5��>
4

16𝜌2

[
𝑟𝑜𝒟���

2

4
�4𝜌

�
�𝒟2

(
4𝜌

𝒟2

− 2

)
(from Term 1)

− 2𝑟(−𝜌2 + 𝜉2 + 1)
(
�4𝜌

𝒟2

− �4

)
(from Term 2)

− 𝑟(𝜌 + 1)��𝒟2
�4𝜌

�
�𝒟2

(
4𝜌

𝒟2

− 2

) ]
; (from Term 3)

(1.294)

then canceling out the obvious items and cleaning up:

𝒦(𝑚)
4𝜌2𝑟𝑟𝑜𝒟

[
𝜌𝑟𝑜𝒟2

(
4𝜌

𝒟2

− 2

)
(from Term 1)

− 2𝑟(−𝜌2 + 𝜉2 + 1)
( 𝜌

𝒟2

− 1

)
(from Term 2)

− 𝜌𝑟(𝜌 + 1)
(

4𝜌

𝒟2

− 2

) ]
. (from Term 3)

(1.295)
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We see that 𝑟𝑜𝜌 = 𝑟, which gives us a mutual 𝑟 that we can cancel out of

all the terms.

𝒦(𝑚)
4𝜌2𝑟𝑜𝒟

[
𝒟2

(
4𝜌

𝒟2

− 2

)
(from Term 1)

− 2(−𝜌2 + 𝜉2 + 1)
( 𝜌

𝒟2

− 1

)
(from Term 2)

− 𝜌(𝜌 + 1)
(

4𝜌

𝒟2

− 2

) ]
. (from Term 3)

(1.296)

We also see that we can cancel out an additional 2 from everything.

𝒦(𝑚)
2𝒟𝑟𝑜𝜌2

[
𝒟2

(
2𝜌

𝒟2

− 1

)
(from Term 1)

− (−𝜌2 + 𝜉2 + 1)
( 𝜌

𝒟2

− 1

)
(from Term 2)

− 𝜌(𝜌 + 1)
(

2𝜌

𝒟2

− 1

) ]
. (from Term 3)

(1.297)

We’ve found ourselves with some more uncommon denominators,

so let’s expand and gather terms.

𝒦(𝑚)
2𝒟𝑟𝑜𝜌2

[
2𝜌 −𝒟2

(from Term 1)

− −𝜌3 + 𝜌𝜉2 + 𝜌

𝒟2

− 𝜌2 + 𝜉2 + 1 (from Term 2)

− 2𝜌3 + 2𝜌2

𝒟2

+ 𝜌2 + 𝜌

]
; (from Term 3)

(1.298)

𝒦(𝑚)
2𝒟𝑟𝑜𝜌2

[
2𝜌 −𝒟2 −�

�𝜌2 + 𝜉2 + 1 +�
�𝜌2 + 𝜌

− −𝜌3 + 𝜌𝜉2 + 𝜌

𝒟2

− 2𝜌3 + 2𝜌2

𝒟2

]
.

(1.299)

Expanding out the 𝒟 in the numerator:

𝒦(𝑚)
2𝒟𝑟𝑜𝜌2

[
�3𝜌 + ��𝜉

2 + �1 − (𝜌2 +��2𝜌 + �1 + ��𝜉)

− −𝜌3 + 𝜌𝜉2 + 𝜌

𝒟2

− 2𝜌3 + 2𝜌2

𝒟2

]
.

(1.300)

Now let’s get a common denominator again, pulling the 𝜌2
inside the

brackets.

𝒦(𝑚)
2𝒟𝑟𝑜

[
𝜌𝒟2 − 𝜌2𝒟2 + ��𝜌

3 − 𝜌𝜉2 − 𝜌 − �2𝜌3 − 2𝜌2

𝒟2𝜌2

]
. (1.301)



DuctAPE Theory 75

We can immediately cancel out a 𝜌:

𝒦(𝑚)
2𝒟𝑟𝑜

[𝒟2 − (𝜌2 + 2𝜌 + 1 + 𝜉2) − 𝜌𝒟2

𝒟2𝜌

]
. (1.302)

We also see that 𝒟2 = 𝜌2 + 2𝜌 + 1 + 𝜉2
, which cancels in the numerator.

𝒦(𝑚)
2𝒟𝑟𝑜

[−𝜌𝒟2

𝜌𝒟2

]
. (1.303)

We are finally left with

−𝒦(𝑚)
2𝒟𝑟𝑜

. (1.304)

Now let’s look at the ℰ(𝑚) terms start back with the term multipliers

with common denominators: equations (1.289) to (1.291).

ℰ(𝑚)
𝑟𝑟𝑜𝒟5𝑚2(𝑚 − 1)

[
2𝑟𝑜𝒟4𝑚(𝑚 − 1) (from Term 1)

− 2𝑟(−𝜌2 + 𝜉2 + 1)(3𝑚 − 4) (from Term 2)

− 2𝑟(𝜌 + 1)𝒟2𝑚(𝑚 − 1)
]
. (from Term 3)

(1.305)

Unlike the 𝒦(𝑚) terms, it doesn’t appear as though anything will cancel

out immediately. Let’s take a similar approach as before and expand out

the 𝑚 terms.

ℰ(𝑚)
𝑟𝑟𝑜𝒟5𝑚2(𝑚 − 1)

[
2𝑟𝑜𝒟4

(
4𝜌

𝒟2

) (
4𝜌

𝒟2

)
− 1) (from Term 1)

− 2𝑟(−𝜌2 + 𝜉2 + 1)
(
3

(
4𝜌

𝒟2

)
− 4

)
(from Term 2)

− 2𝑟(𝜌 + 1)𝒟2

(
4𝜌

𝒟2

) (
4𝜌

𝒟2

)
− 1)

]
. (from Term 3)

(1.306)

Again noting that 𝑟𝑜𝜌 = 𝑟, we can cancel out an 𝑟.

ℰ(𝑚)
𝑟𝑜𝒟5𝑚2(𝑚 − 1)

[
2𝒟4

(
4

𝒟2

) (
4𝜌

𝒟2

)
− 1) (from Term 1)

− 2(−𝜌2 + 𝜉2 + 1)
(
3

(
4𝜌

𝒟2

)
− 4

)
(from Term 2)

− 2(𝜌 + 1)𝒟2

(
4𝜌

𝒟2

) (
4𝜌

𝒟2

)
− 1)

]
. (from Term 3)

(1.307)

We may also want to expand the 𝑚2
on the outside—

1

𝑟𝑜𝒟5𝑚2(𝑚 − 1) =
�
�𝒟4

𝑟𝑜𝒟�516𝜌2(𝑚 − 1)
(1.308)
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—which leaves us with

ℰ(𝑚)
𝑟𝑜𝒟16𝜌2(𝑚 − 1)

[
2𝒟4

(
4

𝒟2

) (
4𝜌

𝒟2

)
− 1) (from Term 1)

− 2(−𝜌2 + 𝜉2 + 1)
(
3

(
4𝜌

𝒟2

)
− 4

)
(from Term 2)

− 2(𝜌 + 1)𝒟2

(
4𝜌

𝒟2

) (
4𝜌

𝒟2

)
− 1)

]
. (from Term 3)

(1.309)

We can now take an 8 out of everything:

ℰ(𝑚)
2𝒟𝑟𝑜𝜌2(𝑚 − 1)

[
𝒟���

2

4

�
�
��

(
1

𝒟2

) (
4𝜌

𝒟2

)
− 1) (from Term 1)

− (−𝜌2 + 𝜉2 + 1)
(
3

( 𝜌

𝒟2

)
− 1

)
(from Term 2)

− (𝜌 + 1)��𝒟2

(
𝜌

�
�𝒟2

) (
4𝜌

𝒟2

)
− 1)

]
. (from Term 3)

(1.310)

Cleaning up a bit:

ℰ(𝑚)
2𝒟𝑟𝑜𝜌2(𝑚 − 1)

[
𝒟2

(
4𝜌

𝒟2

)
− 1) (from Term 1)

− (−𝜌2 + 𝜉2 + 1)
(
3

( 𝜌

𝒟2

)
− 1

)
(from Term 2)

− (𝜌 + 1)𝜌
(

4𝜌

𝒟2

)
− 1)

]
. (from Term 3)

(1.311)

Let’s next expand out the multiplications.

ℰ(𝑚)
2𝒟𝑟𝑜𝜌2(𝑚 − 1)

[
4𝜌 −𝒟2

(from Term 1)

− −3𝜌3 + 3𝜌𝜉2 + 3𝜌

𝒟2

−�
�𝜌2 + 𝜉2 + 1 (from Term 2)

− 4𝜌3 + 4𝜌2

𝒟2

+�
�𝜌2 + 𝜌

]
. (from Term 3)

(1.312)

Gathering terms:

ℰ(𝑚)
2𝒟𝑟𝑜𝜌2(𝑚 − 1)

[
5𝜌 + 𝜉 + 1 −𝒟2 −−3𝜌3 + 3𝜌𝜉2 + 3𝜌

𝒟2

− 4𝜌3 + 4𝜌2

𝒟2

]
.

(1.313)

Expanding the 𝒟 in the numerator:
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ℰ(𝑚)
2𝒟𝑟𝑜𝜌2(𝑚 − 1)

[
���

3

5𝜌 + ��𝜉 + �1 − (𝜌2 +��2𝜌 + �1 + ��𝜉) −−��
3𝜌3 + 3𝜌𝜉2 + 3𝜌 + �4𝜌3 + 4𝜌2

𝒟2

]
.

(1.314)

We can take a 𝜌 out of everything now as well.

ℰ(𝑚)
2𝒟𝑟𝑜𝜌(𝑚 − 1)

[
3 − 𝜌 −3𝜉2 + 3 + 𝜌2 + 4𝜌

𝒟2

]
. (1.315)

Let’s move the 3 into the fraction and expand the 𝒟 that will appear in

the numerator.

ℰ(𝑚)
2𝒟𝑟𝑜𝜌(𝑚 − 1)

−𝜌 − −���
2

3𝜌2 − ���
2

6𝜌 − �3 −��3𝜉 +�
�

3𝜉2 + �3 + ��𝜌
2 +��4𝜌

𝒟2

 . (1.316)

After cleaning up the various cancelations, we can take another 𝜌 out of

everything.

ℰ(𝑚)
2𝒟𝑟𝑜(𝑚 − 1)

[
−1 + 2(𝜌 + 1)

𝒟2

]
. (1.317)

Now let’s move the (𝑚 − 1) into the inside and expand out the 𝑚 and 𝒟
terms.

ℰ(𝑚)
2𝒟𝑟𝑜


−1

4𝜌
(𝜌+1)2+𝜉2

− 1

+ 2(𝜌 + 1)(
4𝜌

(𝜌+1)2+𝜉2
− 1

) (
(𝜌 + 1)2 + 𝜉2

)  . (1.318)

Combining fractions:

ℰ(𝑚)
2𝒟𝑟𝑜


2𝜌 + 2 − (𝜌 + 1)2 − 𝜉2(
4𝜌

(𝜌+1)2+𝜉2
− 1

) (
(𝜌 + 1)2 + 𝜉2

)  . (1.319)

Expanding the numerator:

ℰ(𝑚)
2𝒟𝑟𝑜

 ��2𝜌 + ���
1

2 − 𝜌2 −��2𝜌 − �1 − 𝜉2(
4𝜌

(𝜌+1)2+𝜉2
− 1

) (
(𝜌 + 1)2 + 𝜉2

)  ; (1.320)

ℰ(𝑚)
2𝒟𝑟𝑜


1 − 𝜌2 − 𝜉2(

4𝜌
(𝜌+1)2+𝜉2

− 1

) (
(𝜌 + 1)2 + 𝜉2

)  . (1.321)

Getting a common denominator in the denominator:
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ℰ(𝑚)
2𝒟𝑟𝑜

[
1 − 𝜌2 − 𝜉2

4𝜌 − (𝜌 + 1)2 − 𝜉2

]
. (1.322)

Expanding then simplifying the denominator:

ℰ(𝑚)
2𝒟𝑟𝑜


1 − 𝜌2 − 𝜉2

���
2

4𝜌 − 𝜌2 −��2𝜌 − 1 − 𝜉2

 ; (1.323)

ℰ(𝑚)
2𝒟𝑟𝑜

[
𝜌2 − 1 + 𝜉2

(𝜌 − 1)2 + 𝜉2

]
. (1.324)

Adding and subtracting 2𝜌 + 1 to the numerator:

ℰ(𝑚)
2𝒟𝑟𝑜

[
𝜌2 − 2𝜌 + 1 + 𝜉2 + 2𝜌 − 2

(𝜌 − 1)2 + 𝜉2

]
. (1.325)

Simplifying:

ℰ(𝑚)
2𝒟𝑟𝑜

[ (𝜌 − 1)2 + 𝜉2 + 2(𝜌 − 1)
(𝜌 − 1)2 + 𝜉2

]
. (1.326)

Splitting the fraction:

ℰ(𝑚)
2𝒟𝑟𝑜

[
�
���

���(𝜌 − 1)2 + 𝜉2

(𝜌 − 1)2 + 𝜉2

+ 2(𝜌 − 1)
(𝜌 − 1)2 + 𝜉2

]
. (1.327)

Finally, we are left with

ℰ(𝑚)
2𝒟𝑟𝑜

[
1 + 2(𝜌 − 1)

(𝜌 − 1)2 + 𝜉2

]
. (1.328)

Now combining our 𝒦(𝑚) and ℰ(𝑚) terms from equation (1.304) and

equation (1.328), respectively, we arrive at

𝑣𝑧 = 𝒞 1

2𝒟𝑟𝑜

[
−𝒦(𝑚) +

(
1 + 2(𝜌 − 1)

(𝜌 − 1)2 + 𝜉2

)
ℰ(𝑚)

]
. (1.329)

Expanding out 𝒞 and 𝒟 gives us our final expression as presented in

equation (1.88a):

𝑣𝑧 =
Γ

2𝜋𝑟𝑜

1[
𝜉2 + (𝜌 + 1)2

]
1/2

[
𝒦(𝑚) −

(
1 + 2(𝜌 − 1)

𝜉2 + (𝜌 − 1)2

)
ℰ(𝑚)

]
.

(1.330)
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1.B Detailed Derivation of Singular Portions of the Panel Surface
Integral and Their Analytic Solutions

1.B.1 Unit Axial Velocity Induced by a Vortex Ring
We start with the expression for the axial induced velocity from equa-

tion (1.88).

𝑣𝑧 =
1

2𝜋𝑟𝑜

1

𝐷1

[
𝒦(𝑚) −

(
1 + 2(𝜌 − 1)

𝐷2

)
ℰ(𝑚)

]
(1.88a)

where 𝒦(𝑚) and ℰ(𝑚) are complete elliptic integrals of the first and

second kind, respectively, and

𝑚 =

(
4𝜌

𝜉2 + (𝜌 + 1)2

)
𝜉 =

𝑧 − 𝑧𝑜
𝑟𝑜

𝜌 =
𝑟

𝑟𝑜

𝐷1 =
[
𝜉2 + (𝜌 + 1)2

]
1/2

𝐷2 = 𝜉2 + (𝜌 − 1)2.
Expaning everything out we can begin to see where the singular portions

of the integral over the panel lie:

𝑣
𝛾
𝑧 =

∫ (𝑧2 ,𝑟2)

(𝑧1 ,𝑟1)



∫
1

0

1[
1−

(
4
𝑟
𝑟𝑜

( 𝑧−𝑧𝑜𝑟𝑜 )2+( 𝑟
𝑟𝑜

+1)2

)
sin

2 𝜃

]
1/2
𝑑𝜃

2𝜋𝑟𝑜

[(
𝑧−𝑧𝑜
𝑟𝑜

)
2

+
(
𝑟
𝑟𝑜
+ 1

)
2

]
1/2

−

∫ 𝜋/2

0

[
1 −

(
4
𝑟
𝑟𝑜(

𝑧−𝑧𝑜
𝑟𝑜

)
2

+
(
𝑟
𝑟𝑜
+1

)
2

)
sin

2 𝜃

]
1/2

𝑑𝜃

2𝜋𝑟𝑜

[(
𝑧−𝑧𝑜
𝑟𝑜

)
2

+
(
𝑟
𝑟𝑜
+ 1

)
2

]
1/2

−

∫ 𝜋/2

0

[
1 −

(
4
𝑟
𝑟𝑜(

𝑧−𝑧𝑜
𝑟𝑜

)
2

+
(
𝑟
𝑟𝑜
+1

)
2

)
sin

2 𝜃

]
1/2

𝑑𝜃

2𝜋𝑟𝑜

[(
𝑧−𝑧𝑜
𝑟𝑜

)
2

+
(
𝑟
𝑟𝑜
+ 1

)
2

]
1/2

©­­«
2

(
𝑟
𝑟𝑜
− 1

)
(
𝑧−𝑧𝑜
𝑟𝑜

)
2

+
(
𝑟
𝑟𝑜
− 1

)
2

ª®®¬

𝑑𝑠.

(1.331)

Let’s plug in 𝑧𝑜 = 𝑧 and 𝑟𝑜 = 𝑟 and simplify to show more explicitly

where the singularities in the integrand lie
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∫ 𝜋/2

0

1[
1−

(
4

(0)2+(1+1)2

)
sin

2 𝜃

]
1/2
𝑑𝜃

2𝜋𝑟𝑜
[
(0)2 + (1 + 1)2

]
1/2

(Term 1)

−

∫ 𝜋/2

0

[
1 −

(
4

(0)2+(1+1)2
)

sin
2 𝜃

]
1/2

𝑑𝜃

2𝜋𝑟𝑜
[
(0)2 + (1 + 1)2

]
1/2

(Term 2)

−

∫ 𝜋/2

0

[
1 −

(
4

(0)2+(1+1)2
)

sin
2 𝜃

]
1/2

𝑑𝜃

2𝜋𝑟𝑜
[
(0)2 + (1 + 1)2

]
1/2

(
2 (1 − 1)

(0)2 + (1 − 1)2

)
. (Term 3)

(1.332)

We first note that the elliptic integral of the second kind (in Terms 1 and

3) goes to 1, so we can simplify to∫ 𝜋/2

0

1

[1−sin
2 𝜃]1/2

𝑑𝜃

4𝜋𝑟𝑜︸                  ︷︷                  ︸
Term 1

− 1

4𝜋𝑟𝑜︸︷︷︸
Term 2

− 1

4𝜋𝑟𝑜

(
0

0

)
︸     ︷︷     ︸

Term 3

. (1.333)

We immediately see that Term 2 is not singular, and therefore we can

ignore it going forward. Term 3 on the other hand, is singular. Going

back to the full expression for Term 3, we have:

−1

2𝜋𝑟𝑜

[(
𝑧−𝑧𝑜
𝑟𝑜

)
2

+
(
𝑟
𝑟𝑜
+ 1

)
2

]
1/2

©­­«
2

(
𝑟−𝑟𝑜
𝑟𝑜

)
(
𝑧−𝑧𝑜
𝑟𝑜

)
2

+
(
𝑟−𝑟𝑜
𝑟𝑜

)
2

ª®®¬ . (1.334)

At the singular point, the outer denominator here isn’t singular, so we

can simplify it to 2 when 𝑧 = 𝑧𝑜 and 𝑟 = 𝑟𝑜 ;

−1

4𝜋𝑟𝑜

©­­«
2

(
𝑟−𝑟𝑜
𝑟𝑜

)
(
𝑧−𝑧𝑜
𝑟𝑜

)
2

+
(
𝑟−𝑟𝑜
𝑟𝑜

)
2

ª®®¬ . (1.335)

We can simplify further by noting that both a 2 and 𝑟2

𝑜 cancel.

𝑟𝑜 − 𝑟
2𝜋

[
(𝑧 − 𝑧𝑜)2 + (𝑟 − 𝑟𝑜)2

] (1.336)

We will leave Term 3 for now, and go back and address Term 1. For

the first term, we need to address the non-convergence of the elliptic

integral of the first kind. The asymptotic behavior of the complete elliptic

integral of the first kind (𝒦(𝑚)) as 𝑚 approaches 1—where

𝑚 =
4
𝑟
𝑟𝑜(

𝑧−𝑧𝑜
𝑟𝑜

)
2

+
(
𝑟
𝑟𝑜
+ 1

)
2
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—is well known to be

𝒦(𝑚) ≈ ln

4√
1 − 4

𝑟
𝑟𝑜(

𝑧−𝑧𝑜
𝑟𝑜

)
2

+
(
𝑟
𝑟𝑜
+1

)
2

. (1.337)

So the whole singular Term 1 can be approximated as

1

4𝜋𝑟𝑜
ln

4√
1 − 4

𝑟
𝑟𝑜(

𝑧−𝑧𝑜
𝑟𝑜

)
2

+
(
𝑟
𝑟𝑜
+1

)
2

. (1.338)

We can use logarithm rules to pull out the square root and the 4 for now

1

4𝜋𝑟𝑜

ln(4) − 0.5 ln

©­­«1 −
4
𝑟
𝑟𝑜(

𝑧−𝑧𝑜
𝑟𝑜

)
2

+
(
𝑟
𝑟𝑜
+ 1

)
2

ª®®¬
 . (1.339)

Simplifying inside the second logarithm term

1 −
4
𝑟
𝑟𝑜(

𝑧−𝑧𝑜
𝑟𝑜

)
2

+
(
𝑟
𝑟𝑜
+ 1

)
2

=

(
𝑧−𝑧𝑜
𝑟𝑜

)
2

+
(
𝑟
𝑟𝑜
+ 1

)
2

− 4
𝑟
𝑟𝑜(

𝑧−𝑧𝑜
𝑟𝑜

)
2

+
(
𝑟
𝑟𝑜
+ 1

)
2

getting a common denominator

=

(
𝑧−𝑧𝑜
𝑟𝑜

)
2

+
(
𝑟
𝑟𝑜

)
2

+ 2
𝑟
𝑟𝑜
+ 1 − 4

𝑟
𝑟𝑜(

𝑧−𝑧𝑜
𝑟𝑜

)
2

+
(
𝑟
𝑟𝑜
+ 1

)
2

expanding

=

(
𝑧−𝑧𝑜
𝑟𝑜

)
2

+
(
𝑟
𝑟𝑜

)
2

− 2
𝑟
𝑟𝑜
+ 1(

𝑧−𝑧𝑜
𝑟𝑜

)
2

+
(
𝑟
𝑟𝑜
+ 1

)
2

simplifying

=

(
𝑧−𝑧𝑜
𝑟𝑜

)
2

+
(
𝑟
𝑟𝑜
− 1

)
2(

𝑧−𝑧𝑜
𝑟𝑜

)
2

+
(
𝑟
𝑟𝑜
+ 1

)
2

=
(𝑧 − 𝑧𝑜)2 + (𝑟 − 𝑟𝑜)2

(𝑧 − 𝑧𝑜)2 + (𝑟 + 𝑟𝑜)2
. canceling common denominators

(1.340)

Plugging this into the full expression gives us

1

4𝜋𝑟𝑜

[
ln(4) − 0.5 ln

(
(𝑧 − 𝑧𝑜)2 + (𝑟 − 𝑟𝑜)2

(𝑧 − 𝑧𝑜)2 + (𝑟 + 𝑟𝑜)2

)]
. (1.341)
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Let’s now bring the 4 back inside the logarithm (noting the negative

out front, so it goes into the denominator now), and resolving the

non-singular denominator at 𝑧𝑜 = 𝑧 and 𝑟𝑜 = 𝑟,

1

4𝜋𝑟

[
−0.5 ln

( [
(𝑧 − 𝑧𝑜)2 + (𝑟 − 𝑟𝑜)2

]
16 (02 + (2𝑟)2)

)]
= − 1

8𝜋𝑟

[
ln

(
(𝑧 − 𝑧𝑜)2 + (𝑟 − 𝑟𝑜)2

64𝑟2

)]
.

(1.342)

Now we have both of the singular pieces (Terms 1 and 3) that we need

to subtract from the vortex ring induced axial velocity in our subtraction

of singularity method. Together they are:

𝑟𝑜 − 𝑟
2𝜋

[
(𝑧 − 𝑧𝑜)2 + (𝑟 − 𝑟𝑜)2

] − 1

8𝜋𝑟

[
ln

(
(𝑧 − 𝑧𝑜)2 + (𝑟 − 𝑟𝑜)2

64𝑟2

)]
.

(1.343)

1.B.2 Unit Radial Velocity Induced by a Vortex Ring
For the radial component of velocity induced by a vortex ring, we again

start with our expression from equation (1.88)

𝑣𝑟 = − 1

2𝜋𝑟𝑜

𝜉/𝜌
𝐷1

[
𝒦(𝑚) −

(
1 + 2𝜌

𝐷2

)
ℰ(𝑚)

]
, (1.88b)

where again, 𝒦(𝑚) and ℰ(𝑚) are complete elliptic integrals of the first

and second kind, respectively, and

𝑚 =

(
4𝜌

𝜉2 + (𝜌 + 1)2

)
𝜉 =

𝑧 − 𝑧𝑜
𝑟𝑜

𝜌 =
𝑟

𝑟𝑜

𝐷1 =
[
𝜉2 + (𝜌 + 1)2

]
1/2

𝐷2 = 𝜉2 + (𝜌 − 1)2.
Expanding things out as before:
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𝑣
𝛾
𝑟 =

∫ (𝑧2 ,𝑟2)

(𝑧1 ,𝑟1)


(
𝑧 − 𝑧𝑜
𝑟𝑜

) ∫ 𝜋/2

0

1[
1−

(
4
𝑟
𝑟𝑜

( 𝑧−𝑧𝑜𝑟𝑜 )2+( 𝑟
𝑟𝑜

+1)2

)
sin

2 𝜃

]
1/2
𝑑𝜃

2𝜋𝑟𝑜
(
𝑟
𝑟𝑜

) [(
𝑧−𝑧𝑜
𝑟𝑜

)
2

+
(
𝑟
𝑟𝑜
+ 1

)
2

]
1/2

−
(
𝑧 − 𝑧𝑜
𝑟𝑜

) ∫ 𝜋/2

0

[
1 −

(
4
𝑟
𝑟𝑜(

𝑧−𝑧𝑜
𝑟𝑜

)
2

+
(
𝑟
𝑟𝑜
+1

)
2

)
sin

2 𝜃

]
1/2

𝑑𝜃

2𝜋𝑟𝑜
(
𝑟
𝑟𝑜

) [(
𝑧−𝑧𝑜
𝑟𝑜

)
2

+
(
𝑟
𝑟𝑜
+ 1

)
2

]
1/2

−
(
𝑧 − 𝑧𝑜
𝑟𝑜

) ∫ 𝜋/2

0

[
1 −

(
4
𝑟
𝑟𝑜(

𝑧−𝑧𝑜
𝑟𝑜

)
2

+
(
𝑟
𝑟𝑜
+1

)
2

)
sin

2 𝜃

]
1/2

𝑑𝜃

2𝜋𝑟𝑜
(
𝑟
𝑟𝑜

) [(
𝑧−𝑧𝑜
𝑟𝑜

)
2

+
(
𝑟
𝑟𝑜
+ 1

)
2

]
1/2

©­­«
2

(
𝑟
𝑟𝑜

)
(
𝑧−𝑧𝑜
𝑟𝑜

)
2

+
(
𝑟−𝑟𝑜
𝑟𝑜

)
2

ª®®¬

𝑑𝑠.

(1.344)

Again plugging in 𝑧 = 𝑧𝑜 and 𝑟 = 𝑟𝑜 to clearly see the singularities

(
0

𝑟𝑜

) ∫ 𝜋/2

0

1[
1−

(
4

( 0

𝑟𝑜 )2+(1+1)2

)
sin

2 𝜃

]
1/2
𝑑𝜃

2𝜋𝑟𝑜 (1)
[(

0

𝑟𝑜

)
2

+ (1 + 1)2
]

1/2

Term 1

−
(

0

𝑟𝑜

) ∫ 𝜋/2

0

[
1 −

(
4(

0

𝑟𝑜

)
2

+(1+1)2

)
sin

2 𝜃

]
1/2

𝑑𝜃

2𝜋𝑟𝑜 (1)
[(

0

𝑟𝑜

)
2

+ (1 + 1)2
]

1/2

Term 2

−
(

0

𝑟𝑜

) ∫ 𝜋/2

0

[
1 −

(
4(

0

𝑟𝑜

)
2

+(1+1)2

)
sin

2 𝜃

]
1/2

𝑑𝜃

2𝜋𝑟𝑜 (1)
[(

0

𝑟𝑜

)
2

+ (1 + 1)2
]

1/2

©­­«
2 (1)(

0

𝑟𝑜

)
2

+
(

0

𝑟𝑜

)
2

ª®®¬ . Term 3

(1.345)

As before, we’ll start with the second term and third terms. Again,

the elliptic integral of the second kind will go to 1, meaning Term 2 is

non-singular. For Term 3, we go back to the original expression and have
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(
𝑧 − 𝑧𝑜
𝑟𝑜

)
1

2𝜋𝑟𝑜
(
𝑟
𝑟𝑜

) [(
𝑧−𝑧𝑜
𝑟𝑜

)
2

+
(
𝑟
𝑟𝑜
+ 1

)
2

]
1/2

©­­«
2

(
𝑟
𝑟𝑜

)
(
𝑧−𝑧𝑜
𝑟𝑜

)
2

+
(
𝑟−𝑟𝑜
𝑟𝑜

)
2

ª®®¬ (1.346)

Here a 𝑟/𝑟𝑜 will cancel along with a 𝑟2

𝑜 ; futhermore, the non-singular

outer denominator again goes to 2 (which also cancels), so we are left

with

𝑧𝑜 − 𝑧
2𝜋

[
(𝑧 − 𝑧𝑜)2 + (𝑟 − 𝑟𝑜)2

] (1.347)

For Term 1, we have from the original expression(
𝑧 − 𝑧𝑜
𝑟𝑜

)
𝒦(𝑚)

2𝜋𝑟𝑜
(
𝑟
𝑟𝑜

) [(
𝑧−𝑧𝑜
𝑟𝑜

)
2

+
(
𝑟
𝑟𝑜
+ 1

)
2

]
1/2

. (1.348)

Simplifying the denominator leaves

𝑧 − 𝑧𝑜
4𝜋𝑟2

𝑜

𝒦(𝑚). (1.349)

Applying the asymptotic approximation for 𝒦(𝑚),

𝑧 − 𝑧𝑜
4𝜋𝑟2

𝑜

ln

4√
1 − 4

𝑟
𝑟𝑜(

𝑧−𝑧𝑜
𝑟𝑜

)
2

+
(
𝑟
𝑟𝑜
+1

)
2

. (1.350)

Note that as 𝑧 → 𝑧𝑜 and 𝑟 → 𝑟𝑜 the 𝑟 terms actually don’t induce any

singularity, simplifying out these terms (setting 𝑟 = 𝑟𝑜) leaves

𝑧 − 𝑧𝑜
4𝜋𝑟2

𝑜

ln

4√
1 − 4(

𝑧−𝑧𝑜
𝑟𝑜

)
2

+4

. (1.351)

Getting a common denominator in the radicand gives

𝑧 − 𝑧𝑜
4𝜋𝑟2

𝑜

ln

4√√√ (
𝑧−𝑧𝑜
𝑟𝑜

)
2(

𝑧−𝑧𝑜
𝑟𝑜

)
2

+4

. (1.352)

Again applying logarithm rules to pull out the radical and 4, then noting

that the log(4) is non-singular we ignore it going forward, we have

𝑧 − 𝑧𝑜
8𝜋𝑟2

𝑜

ln

(
𝑧−𝑧𝑜
𝑟𝑜

)
2(

𝑧−𝑧𝑜
𝑟𝑜

)
2

+ 4

. (1.353)
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aj
Note that in the integration step, 𝒔𝑖−𝒑 =

±Δ𝑠 depending on which side of the panel

the subtraction is taking place.

Applying logarithm rules again we see

𝑧 − 𝑧𝑜
8𝜋𝑟2

𝑜

(
ln

(
𝑧 − 𝑧𝑜
𝑟𝑜

)
2

− ln

[(
𝑧 − 𝑧𝑜
𝑟𝑜

)
2

+ 4

])
. (1.354)

At this point (if not already) we can see that this term is analogous to a

sum of expressions taking the form 𝑥 ln(𝑥) which is not, in fact, singular.

Therefore Term 1 is not singular and we can ignore it. Thus the singular

expression which we need to subtract from the radially induced velocity

due a vortex ring is simply that from Term 3 (equation (1.347)):

𝑧 − 𝑧𝑜
2𝜋

[
(𝑧 − 𝑧𝑜)2 + (𝑟 − 𝑟𝑜)2

] (1.347)

1.B.3 Analytic Solutions of Singular Portions of Integrals to Add
Back in

Now that we have all the singular parts that are subtracted, we need

to take the integrals analytically. We will integrate along the panel

lengths, noting that the panel length, Δ𝑠 = |𝒑2 − 𝒑1|. Therefore, all of the

non-logarithmic terms will cancel in the integral since the distances from

the end points to the midpoint is equal, but with opposite sign, from the

endpoints. This just leaves the logarithmic terms which we integrate as

follows:
aj

−1

8𝜋𝑟

∬ [
ln

(
(𝑧 − 𝑧𝑜)2 + (𝑟 − 𝑟𝑜)2

64𝑟2

)]
d𝑧𝑜d𝑟𝑜 (1.355)

=
−1

8𝜋𝑟

∫ 𝒑2

𝒑1

[
ln

( |𝒑 − 𝒔|2
64𝑟2

)]
d𝒔 get in terms of single variable

(1.356)

=
−1

4𝜋𝑟

∫ 𝒑2

𝒑1

[
ln

( |𝒑 − 𝒔|
8𝑟

)]
d𝒔 pull the power of 2 out of the log

(1.357)

=
−1

4𝜋𝑟

(
Δ𝑠 ln

Δ𝑠

16𝑟
− Δ𝑠

)
integrate (1.358)

=
1

4𝜋𝑟

(
Δ𝑠 ln

16𝑟

Δ𝑠
+ Δ𝑠

)
cancel a negative (1.359)

=
Δ𝑠

4𝜋𝑟

(
1 + ln

16𝑟

Δ𝑠

)
. gather terms (1.360)

1.B.4 Unit Axial Velocity Induced by a Source Ring
The unit induced velocity per unit length of the ring sources is
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ak
As we do not necessarily know a priori

where in the design space an optimizer

will search, we need to ensure that the

correction models are continuous over the

entire design space when using gradient-

based optimization.

𝑣𝜎𝑧 =
1

2𝜋𝑟𝑜

𝜉
𝐷1

(
2

𝐷2

ℰ(𝑚)
)

(1.361a)

𝑣𝜎𝑟 =
1

2𝜋𝑟𝑜

1/𝜌
𝐷1

[
𝒦(𝑚) −

(
1 − 2𝜌(𝜌 − 1)

𝐷2

)
ℰ(𝑚)

]
, (1.361b)

where the superscript, 𝜎, indicates a unit source induced velocity.

The singular portions of equation (1.361) to be subtracted during the

numerical integration of a vortex panel influencing itself are

𝑣𝜎𝑧𝑠 =
𝑧 − 𝑧𝑜

2𝜋
[
(𝑧 − 𝑧𝑜)2 + (𝑟 − 𝑟𝑜)2

] , (1.362a)

𝑣𝜎𝑟𝑠 =
𝑟 − 𝑟𝑜

2𝜋
[
(𝑧 − 𝑧𝑜)2 + (𝑟 − 𝑟𝑜)2

] − 1

8𝜋𝑟

[
ln

(
(𝑧 − 𝑧𝑜)2 + (𝑟 − 𝑟𝑜)2

𝑟2

)]
.

(1.362b)

The analytic approximations of these singular portions to be added back

in as part of the numerical integration are

𝑣𝜎𝑧𝑎 = 0.0, (1.363a)

𝑣𝜎𝑟𝑎 =
Δ𝑠

4𝜋𝑟

(
1 + ln

2𝑟

Δ𝑠

)
. (1.363b)

1.C Airfoil Polar Corrections for Ducted Rotors
When airfoil/cascade aerodynamic data is unavailable for each of the

rotor blade sections, it may be possible to use airfoil section data for

subsonic flow regimes (and perhaps even mildly super sonic regimes)

without terrible inaccuracy if we apply some corrections to the airfoil

polar. Though the accuracy of solutions does break down quickly for

high subsonic, transonic, and supersonic cases. If supersonic airfoil or

cascade data is an absolute necessity (e.g. for fully super sonic data),

then the following corrections should not be used, and proper section

polars should be generated through appropriate means. The following

subsections cover the airfoil data corrections and adjustments available

in DuctAPE as well as addition adjustments made to the implementa-

tion of each as required for suitability in gradient-based optimization.

Specifically, we discuss the nominal correction methodology and then go

over implementation details required for removing any discontinuities
ak

present in the nominal formulation.

1.C.1 Stall Cutoffs
Before any actual corrections are applied, we need to make an important

adjustment to the nominal airfoil data. Especially if the airfoil data

provided includes information in the post stall regime, we see that it is
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17 Wallis, “A Rationalised Approach to

Blade Element Design, Axial Flow Fans,”

1968.

18 Wallis, “The F-Series Aerofoils, for Fan

Blade Sections,” 1977.

19 Wallis, Axial Flow Fans and Ducts, 1983.

Nominal

Corrected

Figure 1.C.2: Example curves demon-

strating the changes to the lift coeffi-

cient vs angle of attack for the nom-

inal polar when corrections for a so-

lidity of 1.0 at a stagger angle of 𝜋/4

are applied.

possible to obtain the same lift coefficient at two different angles of attack.

This feature of the airfoil data can make it difficult for the DuctAPE solver

to converge, since a blade element method is the foundation of the rotor

and wake models. To remove the possibility of multiple solutions for the

lift, we effectively cut off the airfoil data post stall and assign our own,

slightly positive lift slope above the maximum lift coefficient and below

the minimum lift coefficient. We keep the nominal data between the

minimum and maximum lift coefficients and smoothly blend that data

into the prescribed lift slopes for the rest of the possible range of angles

of attack. We apply a similar procedure to the drag data, but use the

cutoff angles of attack from the lift curve. Figure 1.C.1 shows an example

of our stall cutoff adjustment to lift and drag data.

−0.7 0.0 0.7

−1

0

1

2

Nominal

Stall Limited

Angle of Attack (radians)

𝑐ℓ

(a) Lift data is overwritten and extended

outside the minimum and maximum lift

coefficient values.

−0.7 0.0 0.7
0.0

0.1

0.2

0.3 Nominal

Stall Limited

Angle of Attack (radians)

𝑐𝑑

(b) We cutoff Drag data at the same

angles of attack as the lift data.

Figure 1.C.1: We cut off airfoil data outside the range of minimum and maximum lift

coefficient and replace/extend the data using a prescribed lift curve slope in order to

avoid numerical difficulties associated with multiple angles of attack resulting in equal

lift coefficients.

1.C.2 Solidity and Stagger Corrections
Isolated airfoil data needs to be corrected to account for cascade, or multi-

plane interference, effects since the airfoils along a rotor blade section are

not actually isolated. This is especially true for higher solidities, where

blades are relatively close together. We apply corrections based on a

simple model published by Wallis
17–19

, which assumes smooth transition

between isolated airfoil and cascade data as solidity increases, as well as

circular camber line airfoil geometries.

The corrections depend both on solidity and stagger, though stagger

only begin to effect the correction after 20 degrees. These corrections

are somewhat limited as they assume the airfoil camber is well matched

to the operating conditions such that the deviation angle isn’t overly

large, but they should be sufficient for our purposes. Wallis gives his

corrections in the form of a line plot, to which quadratic fits are made.

Specifically, we use the quadratic fits provided in the DFDC source code.

https://books.google.com/books?vid=ISBN9780471870869
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20 Glauert et al., “The effect of

compressibility on the lift of an aerofoil,”

1928.

Nominal

Corrected

Figure 1.C.4: Example curves demon-

strating the changes to the lift coeffi-

cient vs angle of attack for the nom-

inal polar when the Prandtl-Glauert

correction applied.

The model is also applied only for stagger angles less than 90 degrees,

and stagger effects are held constant after that. Furthermore, the total

correction factor is set to a maximum of 1, since, as stated by Wallis,

“there are no documented examples of factors exceeding unity,” and the

tendency of theoretical models predict values above 1 appears to be due

to not capturing increased deviation angles completely.

For implementation, since the solidity and stagger corrections only

apply for stagger angles between 20 and 90 degrees, and we also set

a maximum adjustment factor of 1, we limit stagger angles below 20

degrees to 20 degrees, and above 90 degrees to 90 degrees. We apply

these limits using a sigmoid blending function between the limited ranges

and the nominal range. For the limit of the overall adjustment factor, we

subtract the difference of the unlimited adjustment factor and the factor

limit of 1 from the unlimited factor. To keep the end product smooth,

we actually apply another sigmoid blending function to the difference

to be subtracted and zero, centered just before the point of limitation

to mitigate overshoot by the blending function. Figure 1.C.3 shows the

limited correction curves with respect to changes in solidity and stagger.

We also see in figure 1.C.3 that our applications of smooth blending

functions have minimal effect on the calculated correction values.

0 1 2 3

0.4

0.6

0.8

1.0

Nominal

Smoothed

Solidity

𝑐 ℓ
s
s

(a) Corrected value vs solidity for a stag-

ger angle of 𝜋/4.

0 25 50 75 100

0.4

0.5
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0.7

0.8

0.9
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Smoothed
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𝑐 ℓ
s
s

(b) Corrected value vs stagger angle for

a solidity of 𝜎 = 2

Figure 1.C.3: Nominal (with cutoffs) and smoothed solidity and stagger corrections for

a nominal lift coefficient of 1.

1.C.3 Compressibility Lift Corrections
For subsonic compressibility corrections, we apply the well-used Pradtl-

Glauert correction, which is based off of compressible potential flow

and thin airfoil theories
20

. The Pradtl-Glauert correction states that for

the nominal lift coefficient (which in our case is already corrected for

solidty and stagger effects), 𝑐ℓss
, one can apply a correction factor of

𝛽 =
[
1 −𝑀2

]−1/2

to correct for compressibility affects of lift on the airfoil

for Mach numbers, 𝑀, up to about 0.7.

https://dx.doi.org/10.1098/rspa.1928.0039
https://dx.doi.org/10.1098/rspa.1928.0039
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Figure 1.C.5: Nominal (with cutoff

Mach number) and smoothed ver-

sions of the Prandtl-Glauert correc-

tion compared for a nominal lift coef-

ficient of 1.

Nominal

Adjusted

Figure 1.C.6: Example curves demon-

strating the changes to the drag coef-

ficient vs angle of attack for the nomi-

nal polar when the Reynolds number

adjustment is applied for a slightly

higher Reynolds number.

𝑐ℓpg
=

𝑐ℓss

[1 −𝑀2]1/2

(1.364)

where the Mach number is defined as

𝑀 =
𝑊

𝑉𝑠
(1.365)

where𝑊 is the local inflow velocity magnitude and 𝑉𝑠 is the local speed

of sound (which we assume to be the freestream speed of sound). Fig-

ure 1.C.4 shows an example application of the Pradtl-Glauert correction

applied to an arbitrary set of airfoil data for a Mach number of 0.5.

For implementation in a gradient-based optimization setting, we note

that equation (1.364) is only valid for Mach numbers less than 1. At

𝑀 = 1 we get infinity, and for 𝑀 > 1 the output is not a real number. In

order to remedy these issues, we first set a limit on the Mach numbers

that can be input, say 𝑀 = 0.999, we then apply a quintic polynomial

blend between equation (1.364) and the output for the limit of 𝑀 = 0.999

centered at 𝑀 = 0.975 with an interpolation range of 0.02 on either side

of the center point. This provides a smooth transition to the cutoff value

as well as avoids the possibility of equation (1.364) being evaluated at or

above 𝑀 = 1. Although, as may be seen in figure 1.C.5, this adjustments

causes a slight deviation from the nominal correction for high subsonic

Mach numbers, the deviations are small and in ranges that we do not

expect to operate frequently.

1.C.4 Reynolds Number Drag Adjustments
If we have airfoil data at one Reynolds number, but we need to know

how the airfoil behaves at a slightly different Reynolds number, we can

apply an adjustment to the drag coefficient based on similarity between

flat plate skin friction drag. The limitation here is that we assume that

the flow regimes between the Reynolds numbers are similar, in that they

have similar laminar vs turbulent behavior, so that we can cancel out

unknown constants due to airfoil shape and flow regime to arrive at

𝑐𝑑𝑅𝑒 = 𝑐𝑑𝑜

(
𝑅𝑒𝑜

𝑅𝑒

)𝑝
; (1.366)

where 𝑅𝑒 is the local Reynolds number, 𝑅𝑒𝑜 is the Reynolds number at

which the data was generated, and the exponent terms are defined, for

example, as 𝑝 = 0.5 for fully laminar flow and 𝑝 = 0.2 for fully turbulent

flow. Figure 1.C.6 shows an example of the Reynolds number drag

adjustment for an arbitrary drag curve applied for use at a Reynolds

number 2.5 times larger than the nominal case. Note that we do not have

to apply a similar correction to the lift coefficient, because within the

constraint of similar flow regimes (that is, relatively small changes in

Reynolds number), the lift does not actually change significantly. Also

note that in practice, it may be better to simply utilize an interpolation

between data at various Reynolds numbers, especially if the laminar vs

turbulent regime is not fully characterized a priori.
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Nominal

Limited

Figure 1.C.7: Example curves demon-

strating the changes to the lift coeffi-

cient vs angle of attack for the nomi-

nal polar when the critical mach lim-

iter is applied.

an
These numbers are hard coded into

XROTOR and DFDC.

1.C.5 Transonic Effects on Lift and Drag Coefficients
Above a critical Mach number, often around 0.7, the Pradtl-Glauert

correction begins to break down due to transonic effects over the airfoil.

If shock waves are present on the airfoil, we can expect a decrease in

lift as early separation can occur. For these high subsonic and transonic

cases, we apply limiters to the maximum and minimum lift coefficients.

We choose to employ the method used in XROTOR
al

and DFDC
am

. The

lift curve limiter correction used in these codes takes the form:

𝑐ℓcorr
= 𝑐ℓpg

− (1 − 𝑓stall)𝑐ℓlim , (1.367)

where

𝑓stall =

d𝑐ℓ
d𝛼

���
stall

d𝑐ℓ
d𝛼

, (1.368)

and

𝑐ℓ
lim

= Δ𝑐ℓ
stall

ln


1 + 𝑒𝑥𝑝

(
𝑐ℓpg

−𝑐′
ℓmax

Δ𝑐ℓ
stall

)
1 + 𝑒𝑥𝑝

(
𝑐′
ℓ
min

−𝑐ℓpg

Δ𝑐ℓ
stall

)  ; (1.369)

where
d𝑐ℓ
d𝛼

���
stall

is the lift curve slope to apply in the post stall region as

part of this limiting correction, and
d𝑐ℓ
d𝛼 is the nominal lift curve slope.

The Δ𝑐ℓ
stall

term is the change in 𝑐ℓ between incipient and total stall. The

𝑐′
ℓmax

and 𝑐′
ℓmin

values are the minimum and maximum of the nominal

𝑐ℓmax𝑜
and 𝑐ℓmin𝑜

and the following expressions, respectively:

𝑐′ℓmax

= 𝑚𝑖𝑛
[
𝑐ℓ |𝑐𝑑

min

+ 4 (𝑀crit −𝑀 + Δ𝑀stall) , 𝑐ℓmax𝑜

]
(1.370a)

𝑐′ℓmin

= 𝑚𝑎𝑥
[
𝑐ℓ |𝑐𝑑

min

− 4 (𝑀crit −𝑀 + Δ𝑀stall) , 𝑐ℓmin𝑜

]
, (1.370b)

where 𝑀crit is the critical Mach number, 𝑐ℓ |𝑐𝑑𝑚 𝑖𝑛 is the lift coefficient at

the minimum drag angle of attack, and

Δ𝑀stall =

(
0.1

10

)
1/3

(1.371)

is comprised of chosen factors that yield reasonable results.
an

Figure 1.C.7

shows an example transonic limit adjustment for an arbitrary lift curve

given a critical Mach number of 0.7 and an operational Mach number of

0.8.

Along with the limiters placed on the lift curve due to transonic

effects for Mach numbers above the critical Mach number for the airfoil,

there are accompanying increases in the drag coefficients. Again, we

turn to the corrections provided in the XROTOR and DFDC codes, which

add compressibility drag based on the limited lift coefficients described

previously. The added compressibility drag takes the form

https://web.mit.edu/drela/Public/web/xrotor/
https://web.mit.edu/drela/Public/web/xrotor/
https://web.mit.edu/drela/Public/web/dfdc/
https://web.mit.edu/drela/Public/web/dfdc/
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Nominal

Augmented

Figure 1.C.8: Example curves demon-

strating the changes to the drag coef-

ficient vs angle of attack for the nom-

inal polar when the transonic com-

pressibility corrections are added for

a Mach number of 0.1 above 𝑀crit.

ao
Again, these values are hard coded into

XROTOR and DFDC.

𝑐𝑑𝑐 = 𝑐𝑑𝑅𝑒 + 10 (𝑀 −𝑀crit(𝑐ℓ ))3 , (1.372)

where the critical Mach adjusted for the limited lift coefficient takes the

form

𝑀crit(𝑐ℓ ) = 𝑀crit −

����𝑐ℓlim − 𝑐ℓ |𝑐𝑑
min

����
4

− Δ𝑀crit , (1.373)

where

Δ𝑀crit =

(
0.002

10

)
1/3

(1.374)

comes from the difference in Mach corresponding to a rise in 𝑐𝑑 of

0.002 at 𝑀crit, which is chosen to match empirical experience.
ao

Similarly,

as before, the other constants are chosen to yield reasonable results.

Figure 1.C.8 shows an example comparison between a nominal drag

curve and one for which the transonic compressibility augmentations

have been applied for a Mach number 0.1 above 𝑀crit.

For smooth implementation there are several min/max operations in

the lift limiter function, these have been smoothed with sigmoid blending

functions, and very little change is introduced from the nominal function

as seen in figure 1.C.9. In addition, the nominal drag limiter function

only adds drag after the critical Mach number is reached. We smoothed

this transition, which is perhaps less physical, but the differences are

minimal as seen in figure 1.C.9. Furthermore, we used a smoothed

absolute value with relatively tight smoothing range. In this case, there is

a slight over-prediction of the corrected drag for values at and just above

the critical mach number, which actually counters the under prediction

introduced by smoothing across the critical mach.
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Figure 1.C.9: Nominal and smoothed transonic lift and drag coefficient limits across a

range of Mach numbers for a Nominal lift coefficient of unity.

1.C.6 Combined Implementation
In DuctAPE, these corrections are applied as follows. First, it is assumed

that the user inputs airfoil data that is already pre-processed with the
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stall limits applied. Ideally, the airfoil data also inherently has Reynolds

number dependencies (data at various Reynolds numbers) already as

well. Then during computation, the corrections are applied on-the-fly,

beginning with the solidity/stagger correction. The Prandtl-Glauert

compressibility correction is applied next, followed by the Reynolds

number drag correction if data at multiple Reynolds numbers was not

provided. Finally, the transonic effect lift limiter and drag addition

corrections are applied.

1.D Comparison of Corrected Airfoil Polars to Experimental
Cascade Data

To see how the corrections actually fare (especially the solidity and

stagger corrections), we compare to experimental data produced by

NACA for their NACA 65-410 airfoil. The NACA 65-series compressor

blade airfoils are base on a basic thickness form and mean line. The

basic thickness form comes from the 652-016 airfoil which is first scaled

down to 10% thickness and then the y-coordinates are increased by

0.0015 times the chord-wise coordinate to slightly thicken the trailing

edge. There are also directly derived values for the coordinates; they

are slightly different than the scaled values used in the study. The basic

mean line comes from the NACA 6-series method to obtain a design lift

coefficient of 1.0, and then scaled based on the desired lift coefficient.

For example the 65-410 mean camber line takes the basic mean camber

line and scales it by 0.4, while the 65-(12)10 mean camber line is the

basic mean camber line scaled by a factor of 1.2. Tests were run for at

solidities from 0.5 to 1.5 and inflow angles of 30
◦

to 70
◦
, although not

every combination was tested. Tests at solidities of 1.0 and above were

performed at a Reynolds number of 2.45e5; for solidities less than 1.0

tests were performed at a Reynolds number of 2e5. The experimental

data for lift and drag coefficients in the NACA report is given for each

tested combination of inflow angle and solidity across a range of angles

of attack, generally ranging from negative to positive stall. Note that the

lift and drag forces were not measured directly, but rather calculated

from pressure and velocity measurements. In order to apply our airfoil

corrections we calculate the stagger angles, 𝛾, from the provided inflow

angles, 𝛽1, and angles of attack, 𝛼, as

𝛾 = 𝛽1 − 𝛼 (1.375)

Figure 1.D.1: NACA 65-410 compressor series airfoil geometry (using the scaled

ordinates).

As can be seen in figure 1.D.2, the method of corrected airfoil data

does not do especially well at matching actual cascade data. In general,

the lift curve slopes of the cascades are much shallower than that of the
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isolated and corrected XFOIL outputs. In addition, the drag “bucket”

of the isolated airfoil is much narrower than for the cascades. We note

that we did not apply drag corrections in an attempt to capture cascade

effects. Such corrections would increase the drag due to blockage from

solidity and increase the discrepancies we already see in figure 1.D.2.
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Figure 1.D.2: Comparison of NACA experimental data (▲ markers) and XFOIL airfoil

outputs with applied corrections (lines) for angles of attack vs lift (𝑐ℓ ) and drag (𝑐𝑑)
coefficients at various inflow angles (𝛽

1
) and solidities. Blue indicates solidity = 1.0, red

indicates solidity = 1.25, and green indicates solidity = 1.5; Grey dashed lines indicate

the uncorrected, smoothed XFOIL outputs.
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1.E Transformation of Poisson Equations
In order to interchange the dependent and independent variables of

𝜉(𝑧, 𝑟) ≡ 𝜉𝑧𝑧 + 𝜉𝑟𝑟 = 0 (1.376a)

𝜂(𝑧, 𝑟) ≡ 𝜂𝑧𝑧 + 𝜂𝑟𝑟 =
𝜓𝑟
𝑟
, (1.376b)

where 𝜂 = 𝜓 = constant along streamlines (thus 𝜂 coordinates correspond

to the physical location of streamlines) and 𝜉 is constant along radial lines

and can be arbitrarily chosen, we apply the derivative transformations:

𝑓𝑧 =
𝑟𝜂 𝑓𝜉 − 𝑟𝜉 𝑓𝜂

𝐽
(1.377a)

𝑓𝑟 =
−𝑧𝜂 𝑓𝜉 + 𝑧𝜉 𝑓𝜂

𝐽
, (1.377b)

where 𝐽 = 𝑧𝜉𝑟𝜂 − 𝑧𝜂𝑟𝜉.

Let’s look first at the 𝜉𝑧𝑧 term. We will begin by applying equa-

tion (1.377a):

𝜉𝑧 =
𝑟𝜂𝜉𝜉 − 𝑟𝜉𝜉𝜂

𝐽
(1.378)

𝜉𝑧𝑧 =

𝑟𝜂

(
𝑟𝜂𝜉𝜉−𝑟𝜉𝜉𝜂

𝐽

)
𝜉
− 𝑟𝜉

(
𝑟𝜂𝜉𝜉−𝑟𝜉𝜉𝜂

𝐽

)
𝜂

𝐽
. (1.379)

Recognizing that 𝜉𝜉 = 1, and 𝜉𝜂 = 0 (by orthogonality), we can simplify.

𝜉𝑧𝑧 =

𝑟𝜂

(
𝑟𝜂
𝐽

)
𝜉
− 𝑟𝜉

(
𝑟𝜂
𝐽

)
𝜂

𝐽
.

Applying the quotient rule:

𝜉𝑧𝑧 =
𝑟𝜂

(
𝑟𝜂𝜉 𝐽−𝑟𝜂 𝐽𝜉

𝐽2

)
− 𝑟𝜉

(
𝑟𝜂𝜂 𝐽−𝑟𝜂 𝐽𝜂

𝐽2

)
𝐽

=
𝑟𝜂

(
𝑟𝜂𝜉𝐽 − 𝑟𝜂𝐽𝜉

)
− 𝑟𝜉

(
𝑟𝜂𝜂𝐽 − 𝑟𝜂𝐽𝜂

)
𝐽3

.

Expanding:

𝜉𝑧𝑧 =
𝑟𝜂𝑟𝜂𝜉𝐽 − 𝑟2

𝜂 𝐽𝜉 − 𝑟𝜉𝑟𝜂𝜂𝐽 + 𝑟𝜉𝑟𝜂𝐽𝜂
𝐽3

. (1.380)

We’ll leave 𝜉𝑧𝑧 here for now and follow the same procedure for 𝜉𝑟𝑟—
beginning by applying equation (1.377b):
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𝜉𝑟 =
−𝑧𝜂𝜉𝜉 + 𝑧𝜉𝜉𝜂

𝐽
(1.381)

𝜉𝑟𝑟 =

−𝑧𝜂
(−𝑧𝜂𝜉𝜉+𝑧𝜉𝜉𝜂

𝐽

)
𝜉
+ 𝑧𝜉

(−𝑧𝜂𝜉𝜉+𝑧𝜉𝜉𝜂
𝐽

)
𝜂

𝐽
. (1.382)

Again recognizing that 𝜉𝜉 = 1, and 𝜉𝜂 = 0 (by orthogonality), we can

simplify:

𝜉𝑟𝑟 =

−𝑧𝜂
(−𝑧𝜂
𝐽

)
𝜉
+ 𝑧𝜉

(−𝑧𝜂
𝐽

)
𝜂

𝐽
. (1.383)

Applying the quotient rule:

𝜉𝑟𝑟 =
−𝑧𝜂

(−𝑧𝜂𝜉 𝐽+𝑧𝜂 𝐽𝜉
𝐽2

)
+ 𝑧𝜉

(−𝑧𝜂𝜂 𝐽+𝑧𝜂 𝐽𝜂
𝐽2

)
𝐽

. (1.384)

Expanding:

𝜉𝑟𝑟 =
𝑧𝜂𝑧𝜂𝜉𝐽 − 𝑧2

𝜂𝐽𝜉 − 𝑧𝜉𝑧𝜂𝜂𝐽 + 𝑧𝜉𝑧𝜂𝐽𝜂
𝐽3

. (1.385)

Now that we have both 𝜉𝑧𝑧 and 𝜉𝑟𝑟 , let us perform similar transfor-

mations for 𝜂𝑧𝑧 and 𝜂𝑟𝑟 . Let us begin with equation (1.377a):

𝜂𝑧 =
𝑟𝜂𝜂𝜉 − 𝑟𝜉𝜂𝜂

𝐽
(1.386)

𝜂𝑧𝑧 =

𝑟𝜂

(
𝑟𝜂𝜂𝜉−𝑟𝜉𝜂𝜂

𝐽

)
𝜉
− 𝑟𝜉

(
𝑟𝜂𝜂𝜉−𝑟𝜉𝜂𝜂

𝐽

)
𝜂

𝐽
. (1.387)

Here, 𝜂𝜉 = 0 (by orthogonality), and 𝜂𝜂 = 1. So we simplify as follows

𝜂𝑧𝑧 =

𝑟𝜂

(
−𝑟𝜉
𝐽

)
𝜉
− 𝑟𝜉

(
−𝑟𝜉
𝐽

)
𝜂

𝐽
. (1.388)

Applying the quotient rule:

𝜂𝑧𝑧 =
𝑟𝜂

(
−𝑟𝜉𝜉 𝐽+𝑟𝜉 𝐽𝜉

𝐽2

)
− 𝑟𝜉

(−𝑟𝜉𝜂 𝐽+𝑟𝜉 𝐽𝜂
𝐽2

)
𝐽

. (1.389)

Expanding:

𝜂𝑧𝑧 =
−𝑟𝜂𝑟𝜉𝜉𝐽 + 𝑟𝜂𝑟𝜉𝐽𝜉 + 𝑟𝜉𝑟𝜉𝜂𝐽 − 𝑟2

𝜉𝐽𝜂

𝐽3
. (1.390)

As we saw above, the expression for 𝜂𝑟𝑟 will be nearly identical to that

for 𝜂𝑧𝑧
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𝜂𝑟 =
−𝑧𝜂𝜂𝜉 + 𝑧𝜉𝜂𝜂

𝐽
(1.391)

𝜂𝑟𝑟 =

−𝑧𝜂
(−𝑧𝜂𝜂𝜉+𝑧𝜉𝜂𝜂

𝐽

)
𝜉
+ 𝑧𝜉

(−𝑧𝜂𝜂𝜉+𝑧𝜉𝜂𝜂
𝐽

)
𝜂

𝐽
. (1.392)

Again recognizing that 𝜂𝜉 = 0, and 𝜂𝜂 = 1, we simplify:

𝜂𝑟𝑟 =

−𝑧𝜂
(
𝑧𝜉
𝐽

)
𝜉
+ 𝑧𝜉

(
𝑧𝜉
𝐽

)
𝜂

𝐽
. (1.393)

Applying the quotient rule:

𝜂𝑟𝑟 =
−𝑧𝜂

(
𝑧𝜉𝜉 𝐽−𝑧𝜉 𝐽𝜉

𝐽2

)
+ 𝑧𝜉

(
𝑧𝜉𝜂 𝐽−𝑧𝜉 𝐽𝜂

𝐽2

)
𝐽

. (1.394)

Expanding:

𝜂𝑟𝑟 =
−𝑧𝜂𝑧𝜉𝜉𝐽 + 𝑧𝜂𝑧𝜉𝐽𝜉 + 𝑧𝜉𝑧𝜉𝜂𝐽 − 𝑧2

𝜉𝐽𝜂

𝐽3
. (1.395)

Before putting everything together, we also need to transform the

right hand side of equation (1.376b) using equation (1.377b) as we have

done, noting in this case that we only have a single, rather than a double,

derivative.

1

𝑟
𝜓𝑟 =

−𝑧𝜂𝜓𝜉 + 𝑧𝜉𝜓𝜂

𝑟𝐽
. (1.396)

Remembering that we have chosen 𝜓 = 𝜂, and making similar simplifica-

tions with the derivitives we have thus far (𝜂𝜂 = 1, 𝜂𝜉 = 0), we are left

with

1

𝑟
𝜓𝑟 =

𝑧𝜉

𝑟𝐽
. (1.397)

Let’s now bring it all together in the Poisson equations to see where

we are, multiplying everything by 𝐽3 to remove all the fractions. For

convenience and clarity, we’ll also note that (·)𝜉𝜂 = (·)𝜂𝜉 and put every

instance in the 𝜉𝜂 order.

[
𝑟𝜂𝑟𝜉𝜂𝐽 − 𝑟2

𝜂 𝐽𝜉 − 𝑟𝜉𝑟𝜂𝜂𝐽 + 𝑟𝜉𝑟𝜂𝐽𝜂
]
+

[
𝑧𝜂𝑧𝜉𝜂𝐽 − 𝑧2

𝜂𝐽𝜉 − 𝑧𝜉𝑧𝜂𝜂𝐽 + 𝑧𝜉𝑧𝜂𝐽𝜂
]
= 0

(1.398a)[
−𝑟𝜂𝑟𝜉𝜉𝐽 + 𝑟𝜂𝑟𝜉𝐽𝜉 + 𝑟𝜉𝑟𝜉𝜂𝐽 − 𝑟2

𝜉𝐽𝜂

]
+

[
−𝑧𝜂𝑧𝜉𝜉𝐽 + 𝑧𝜂𝑧𝜉𝐽𝜉 + 𝑧𝜉𝑧𝜉𝜂𝐽 − 𝑧2

𝜉𝐽𝜂

]
=
𝑧𝜉𝐽

2

𝑟
.

(1.398b)
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In order to get the final 𝑧(𝜉, 𝜂) and 𝑟(𝜉, 𝜂) relations, we’ll first need to

do some more expanding, specifically of the jacobian (and its derivatives,

applying the product rule):

𝐽 = 𝑧𝜉𝑟𝜂 − 𝑧𝜂𝑟𝜉 (1.399a)

𝐽𝜉 = 𝑧𝜉𝜉𝑟𝜂 + 𝑧𝜉𝑟𝜉𝜂 − 𝑧𝜉𝜂𝑟𝜉 − 𝑧𝜂𝑟𝜉𝜉 (1.399b)

𝐽𝜂 = 𝑧𝜉𝜂𝑟𝜂 + 𝑧𝜉𝑟𝜂𝜂 − 𝑧𝜂𝜂𝑟𝜉 − 𝑧𝜂𝑟𝜉𝜂 . (1.399c)

Now we just need to expand everything out. Let’s start with the

transformation of the 𝜉𝑧𝑧 term (first term on the left hand side of

equation (1.398a)). As we expand things out, we’ll also rearrange

terms to facilitate easier comparison.

𝜉𝑧𝑧 =𝑟𝜂𝑟𝜉𝜂(𝑧𝜉𝑟𝜂 − 𝑧𝜂𝑟𝜉)
− 𝑟2

𝜂(𝑧𝜉𝜉𝑟𝜂 + 𝑧𝜉𝑟𝜉𝜂 − 𝑧𝜉𝜂𝑟𝜉 − 𝑧𝜂𝑟𝜉𝜉)
− 𝑟𝜉𝑟𝜂𝜂(𝑧𝜉𝑟𝜂 − 𝑧𝜂𝑟𝜉)
+ 𝑟𝜉𝑟𝜂(𝑧𝜉𝜂𝑟𝜂 + 𝑧𝜉𝑟𝜂𝜂 − 𝑧𝜂𝜂𝑟𝜉 − 𝑧𝜂𝑟𝜉𝜂)

=
����𝑧𝜉𝑟𝜉𝜂𝑟

2

𝜂 − 𝑧𝜂𝑟𝜉𝑟𝜉𝜂𝑟𝜂
− 𝑧𝜉𝜉𝑟3

𝜂 −��
��𝑧𝜉𝑟𝜉𝜂𝑟

2

𝜂 + 𝑧𝜉𝜂𝑟𝜉𝑟2

𝜂 + 𝑧𝜂𝑟𝜉𝜉𝑟2

𝜂

−
�����𝑧𝜉𝑟𝜉𝑟𝜂𝜂𝑟𝜂 + 𝑧𝜂𝑟2

𝜉𝑟𝜂𝜂

+ 𝑧𝜉𝜂𝑟𝜉𝑟2

𝜂 +�����𝑧𝜉𝑟𝜉𝑟𝜂𝜂𝑟𝜂 − 𝑧𝜂𝜂𝑟2

𝜉𝑟𝜂 − 𝑧𝜂𝑟𝜉𝑟𝜉𝜂𝑟𝜂
= − 𝑧𝜉𝜉𝑟3

𝜂 − 𝑧𝜂𝜂𝑟2

𝜉𝑟𝜂

− 2𝑧𝜂𝑟𝜉𝑟𝜉𝜂𝑟𝜂 + 2𝑧𝜉𝜂𝑟𝜉𝑟
2

𝜂

+ 𝑧𝜂𝑟𝜉𝜉𝑟2

𝜂 + 𝑧𝜂𝑟2

𝜉𝑟𝜂𝜂 .

(1.400)

Now 𝜉𝑟𝑟 (second term in equation (1.398a)):

𝜉𝑟𝑟 =𝑧𝜂𝑧𝜉𝜂(𝑧𝜉𝑟𝜂 − 𝑧𝜂𝑟𝜉)
− 𝑧2

𝜂(𝑧𝜉𝜉𝑟𝜂 + 𝑧𝜉𝑟𝜉𝜂 − 𝑧𝜉𝜂𝑟𝜉 − 𝑧𝜂𝑟𝜉𝜉)
− 𝑧𝜉𝑧𝜂𝜂(𝑧𝜉𝑟𝜂 − 𝑧𝜂𝑟𝜉)
+ 𝑧𝜉𝑧𝜂(𝑧𝜉𝜂𝑟𝜂 + 𝑧𝜉𝑟𝜂𝜂 − 𝑧𝜂𝜂𝑟𝜉 − 𝑧𝜂𝑟𝜉𝜂)

=𝑧𝜉𝑧𝜉𝜂𝑧𝜂𝑟𝜂 −
�
���𝑧𝜉𝜂𝑧

2

𝜂𝑟𝜉

− 𝑧𝜉𝜉𝑧2

𝜂𝑟𝜂 − 𝑧𝜉𝑧2

𝜂𝑟𝜉𝜂 +�
���𝑧𝜉𝜂𝑧

2

𝜂𝑟𝜉 + 𝑧3

𝜂𝑟𝜉𝜉

− 𝑧2

𝜉𝑧𝜂𝜂𝑟𝜂 +�����𝑧𝜉𝑧𝜂𝜂𝑧𝜂𝑟𝜉

+ 𝑧𝜉𝑧𝜉𝜂𝑧𝜂𝑟𝜂 + 𝑧2

𝜉𝑧𝜂𝑟𝜂𝜂 −�����𝑧𝜉𝑧𝜂𝜂𝑧𝜂𝑟𝜉 − 𝑧𝜉𝑧2

𝜂𝑟𝜉𝜂

= − 𝑧𝜉𝜉𝑧2

𝜂𝑟𝜂 − 𝑧2

𝜉𝑧𝜂𝜂𝑟𝜂

+ 2𝑧𝜉𝑧𝜉𝜂𝑧𝜂𝑟𝜂 − 2𝑧𝜉𝑧
2

𝜂𝑟𝜉𝜂

+ 𝑧3

𝜂𝑟𝜉𝜉 + 𝑧2

𝜉𝑧𝜂𝑟𝜂𝜂 .

(1.401)
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Next 𝜂𝑧𝑧 (first term in equation (1.398b)):

𝜂𝑧𝑧 = − 𝑟𝜂𝑟𝜉𝜉(𝑧𝜉𝑟𝜂 − 𝑧𝜂𝑟𝜉)
+ 𝑟𝜂𝑟𝜉(𝑧𝜉𝜉𝑟𝜂 + 𝑧𝜉𝑟𝜉𝜂 − 𝑧𝜉𝜂𝑟𝜉 − 𝑧𝜂𝑟𝜉𝜉)
+ 𝑟𝜉𝑟𝜉𝜂(𝑧𝜉𝑟𝜂 − 𝑧𝜂𝑟𝜉)
− 𝑟2

𝜉(𝑧𝜉𝜂𝑟𝜂 + 𝑧𝜉𝑟𝜂𝜂 − 𝑧𝜂𝜂𝑟𝜉 − 𝑧𝜂𝑟𝜉𝜂)
= − 𝑧𝜉𝑟𝜉𝜉𝑟2

𝜂 +�����𝑧𝜂𝑟𝜉𝜉𝑟𝜉𝑟𝜂

+ 𝑧𝜉𝜉𝑟𝜉𝑟2

𝜂 + 𝑧𝜉𝑟𝜉𝑟𝜉𝜂𝑟𝜂 − 𝑧𝜉𝜂𝑟2

𝜉𝑟𝜂 −�����𝑧𝜂𝑟𝜉𝜉𝑟𝜉𝑟𝜂

+ 𝑧𝜉𝑟𝜉𝑟𝜉𝜂𝑟𝜂 −�
���𝑧𝜂𝑟

2

𝜉𝑟𝜉𝜂

− 𝑧𝜉𝜂𝑟2

𝜉𝑟𝜂 − 𝑧𝜉𝑟2

𝜉𝑟𝜂𝜂 + 𝑧𝜂𝜂𝑟3

𝜉 +�
���𝑧𝜂𝑟

2

𝜉𝑟𝜉𝜂

=𝑧𝜉𝜉𝑟𝜉𝑟
2

𝜂 + 𝑧𝜂𝜂𝑟3

𝜉

+ 2𝑧𝜉𝑟𝜉𝑟𝜉𝜂𝑟𝜂 − 2𝑧𝜉𝜂𝑟
2

𝜉𝑟𝜂

− 𝑧𝜉𝑟𝜉𝜉𝑟2

𝜂 − 𝑧𝜉𝑟2

𝜉𝑟𝜂𝜂 .

(1.402)

Then 𝜂𝑟𝑟 (second term in equation (1.398b)):

𝜂𝑟𝑟 = − 𝑧𝜂𝑧𝜉𝜉(𝑧𝜉𝑟𝜂 − 𝑧𝜂𝑟𝜉)
+ 𝑧𝜂𝑧𝜉(𝑧𝜉𝜉𝑟𝜂 + 𝑧𝜉𝑟𝜉𝜂 − 𝑧𝜉𝜂𝑟𝜉 − 𝑧𝜂𝑟𝜉𝜉)
+ 𝑧𝜉𝑧𝜉𝜂(𝑧𝜉𝑟𝜂 − 𝑧𝜂𝑟𝜉)
− 𝑧2

𝜉(𝑧𝜉𝜂𝑟𝜂 + 𝑧𝜉𝑟𝜂𝜂 − 𝑧𝜂𝜂𝑟𝜉 − 𝑧𝜂𝑟𝜉𝜂)
= −(((((𝑧𝜉𝜉𝑧𝜉𝑧𝜂𝑟𝜂 + 𝑧𝜉𝜉𝑧2

𝜂𝑟𝜉

+(((((𝑧𝜉𝜉𝑧𝜉𝑧𝜂𝑟𝜂 + 𝑧2

𝜉𝑧𝜂𝑟𝜉𝜂 − 𝑧𝜉𝑧𝜉𝜂𝑧𝜂𝑟𝜉 − 𝑧𝜉𝑧2

𝜂𝑟𝜉𝜉

+
��

��𝑧2

𝜉𝑧𝜉𝜂𝑟𝜂 − 𝑧𝜉𝑧𝜉𝜂𝑧𝜂𝑟𝜉
−
�
���𝑧2

𝜉𝑧𝜉𝜂𝑟𝜂 − 𝑧3

𝜉𝑟𝜂𝜂 + 𝑧
2

𝜉𝑧𝜂𝜂𝑟𝜉 + 𝑧2

𝜉𝑧𝜂𝑟𝜉𝜂

=𝑧𝜉𝜉𝑧
2

𝜂𝑟𝜉 + 𝑧2

𝜉𝑧𝜂𝜂𝑟𝜉

+ 2𝑧2

𝜉𝑧𝜂𝑟𝜉𝜂 − 2𝑧𝜉𝑧𝜉𝜂𝑧𝜂𝑟𝜉

− 𝑧𝜉𝑧2

𝜂𝑟𝜉𝜉 − 𝑧3

𝜉𝑟𝜂𝜂 .

(1.403)

Finally, we’ll partially expand the right hand side term of equa-

tion (1.398b):

𝑧𝜉𝐽
2

𝑟
=
𝐽

𝑟
𝑧𝜉(𝑧𝜉𝑟𝜂 − 𝑧𝜂𝑟𝜉). (1.404)

Let’s first look at the case where both parametric expressions are

Laplace equations, that is to say, if the right hand side of equation (1.376b)

was zero. We can put our expanded expressions back together, gathering

like terms.
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𝜉𝑧𝑧 + 𝜉𝑟𝑟 = − 𝑧𝜉𝜉(𝑧2

𝜂 + 𝑟2

𝜂)𝑟𝜂
− 𝑧𝜂𝜂(𝑧2

𝜉 + 𝑟2

𝜉)𝑟𝜂
+ 2𝑧𝜉𝜂(𝑧𝜉𝑧𝜂 + 𝑟𝜉𝑟𝜂)𝑟𝜂
− 2𝑟𝜉𝜂(𝑧𝜉𝑧𝜂 + 𝑟𝜉𝑟𝜂)𝑧𝜂
+ 𝑟𝜉𝜉(𝑧2

𝜂 + 𝑟2

𝜂)𝑧𝜂
+ 𝑟𝜂𝜂(𝑧2

𝜉 + 𝑟2

𝜉)𝑧𝜂

(1.405a)

𝜂𝑧𝑧 + 𝜂𝑟𝑟 =𝑧𝜉𝜉(𝑧2

𝜂 + 𝑟2

𝜂)𝑟𝜉
+ 𝑧𝜂𝜂(𝑧2

𝜉 + 𝑟2

𝜉)𝑟𝜉
− 2𝑧𝜉𝜂(𝑧𝜉𝑧𝜂 + 𝑟𝜉𝑟𝜂)𝑟𝜉
+ 2𝑟𝜉𝜂(𝑧𝜉𝑧𝜂 + 𝑟𝜉𝑟𝜂)𝑧𝜉
− 𝑟𝜉𝜉(𝑧2

𝜂 + 𝑟2

𝜂)𝑧𝜉
− 𝑟𝜂𝜂(𝑧2

𝜉 + 𝑟2

𝜉)𝑧𝜉 .

(1.405b)

What we actually need from the above equations is 𝑧(𝜉, 𝜂) and 𝑟(𝜉, 𝜂), so

we’ll equate the two expressions and put the 𝑧 terms together, and the 𝑟

terms together.

0 =𝑧𝜉𝜉(𝑧2

𝜂 + 𝑟2

𝜂)(𝑟𝜉 − 𝑟𝜂)
− 2𝑧𝜉𝜂(𝑧𝜉𝑧𝜂 + 𝑟𝜉𝑟𝜂)(𝑟𝜉 − 𝑟𝜂)
+ 𝑧𝜂𝜂(𝑧2

𝜉 + 𝑟2

𝜉)(𝑟𝜉 − 𝑟𝜂)
(1.406a)

0 =𝑟𝜉𝜉(𝑧2

𝜂 + 𝑟2

𝜂)(𝑧𝜉 − 𝑧𝜂)
− 2𝑟𝜉𝜂(𝑧𝜉𝑧𝜂 + 𝑟𝜉𝑟𝜂)(𝑧𝜉 − 𝑧𝜂)
+ 𝑟𝜂𝜂(𝑧2

𝜉 + 𝑟2

𝜉)(𝑧𝜉 − 𝑧𝜂).
(1.406b)

Since both of the expressions equal zero, we can divide out the

common terms and we are left with

𝑧(𝜉, 𝜂) ≡ 𝛼𝑧𝜉𝜉 − 2𝛽𝑧𝜉𝜂 + 𝛾𝑧𝜂𝜂 = 0 (1.407a)

𝑟(𝜉, 𝜂) ≡ 𝛼𝑟𝜉𝜉 − 2𝛽𝑟𝜉𝜂 + 𝛾𝑟𝜂𝜂 = 0. (1.407b)

where

𝛼 = 𝑧2

𝜂 + 𝑟2

𝜂 (1.408a)

𝛽 = 𝑧𝜉𝑧𝜂 + 𝑟𝜉𝑟𝜂 (1.408b)

𝛾 = 𝑧2

𝜉 + 𝑟2

𝜉 . (1.408c)

Now in the case where the right hand side of equation (1.376b) is not

zero, we need to apply some more considerations rather than simply
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equating things and dividing out terms. Putting things together with

the full Poisson equations we have

𝜉𝑧𝑧 + 𝜉𝑟𝑟 = − 𝑧𝜉𝜉(𝑧2

𝜂 + 𝑟2

𝜂)𝑟𝜂
− 𝑧𝜂𝜂(𝑧2

𝜉 + 𝑟2

𝜉)𝑟𝜂
+ 2𝑧𝜉𝜂(𝑧𝜉𝑧𝜂 + 𝑟𝜉𝑟𝜂)𝑟𝜂
− 2𝑟𝜉𝜂(𝑧𝜉𝑧𝜂 + 𝑟𝜉𝑟𝜂)𝑧𝜂
+ 𝑟𝜉𝜉(𝑧2

𝜂 + 𝑟2

𝜂)𝑧𝜂
+ 𝑟𝜂𝜂(𝑧2

𝜉 + 𝑟2

𝜉)𝑧𝜂

(1.409a)

𝜂𝑧𝑧 + 𝜂𝑟𝑟 −
𝜂𝑟
𝑟

=𝑧𝜉𝜉(𝑧2

𝜂 + 𝑟2

𝜂)𝑟𝜉
+ 𝑧𝜂𝜂(𝑧2

𝜉 + 𝑟2

𝜉)𝑟𝜉
− 2𝑧𝜉𝜂(𝑧𝜉𝑧𝜂 + 𝑟𝜉𝑟𝜂)𝑟𝜉
+ 2𝑟𝜉𝜂(𝑧𝜉𝑧𝜂 + 𝑟𝜉𝑟𝜂)𝑧𝜉
− 𝑟𝜉𝜉(𝑧2

𝜂 + 𝑟2

𝜂)𝑧𝜉
− 𝑟𝜂𝜂(𝑧2

𝜉 + 𝑟2

𝜉)𝑧𝜉

− 𝐽

𝑟
𝑧𝜉(𝑟𝜂)𝑧𝜉

+ 𝐽

𝑟
𝑧𝜉(𝑧𝜂)𝑟𝜉 .

(1.409b)

To help combine things, we’ll add and subtract the same expression from

equation (1.410).

𝜉𝑧𝑧 + 𝜉𝑟𝑟 = − 𝑧𝜉𝜉(𝑧2

𝜂 + 𝑟2

𝜂)𝑟𝜂
− 𝑧𝜂𝜂(𝑧2

𝜉 + 𝑟2

𝜉)𝑟𝜂
+ 2𝑧𝜉𝜂(𝑧𝜉𝑧𝜂 + 𝑟𝜉𝑟𝜂)𝑟𝜂
− 2𝑟𝜉𝜂(𝑧𝜉𝑧𝜂 + 𝑟𝜉𝑟𝜂)𝑧𝜂
+ 𝑟𝜉𝜉(𝑧2

𝜂 + 𝑟2

𝜂)𝑧𝜂
+ 𝑟𝜂𝜂(𝑧2

𝜉 + 𝑟2

𝜉)𝑧𝜂

+ 𝐽

𝑟
𝑧𝜉𝑟𝜂𝑧𝜂

− 𝐽

𝑟
𝑧𝜉𝑟𝜂𝑧𝜂 .

(1.410)
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Now adding equation (1.410) to equation (1.409b) gives

0 =𝑧𝜉𝜉(𝑧2

𝜂 + 𝑟2

𝜂)(𝑟𝜉 − 𝑟𝜂)
− 2𝑧𝜉𝜂(𝑧𝜉𝑧𝜂 + 𝑟𝜉𝑟𝜂)(𝑟𝜉 − 𝑟𝜂)
+ 𝑧𝜂𝜂(𝑧2

𝜉 + 𝑟2

𝜉)(𝑟𝜉 − 𝑟𝜂)

− 𝐽

𝑟
𝑧𝜉(𝑧𝜂)(𝑟𝜉 − 𝑟𝜂)

− 𝑟𝜉𝜉(𝑧2

𝜂 + 𝑟2

𝜂)(𝑧𝜉 − 𝑧𝜂)
+ 2𝑟𝜉𝜂(𝑧𝜉𝑧𝜂 + 𝑟𝜉𝑟𝜂)(𝑧𝜉 − 𝑧𝜂)
− 𝑟𝜂𝜂(𝑧2

𝜉 + 𝑟2

𝜉)(𝑧𝜉 − 𝑧𝜂)

+ 𝐽

𝑟
𝑧𝜉(𝑟𝜂)(𝑧𝜉 − 𝑧𝜂).

(1.411)

Separating out expressions for 𝑧 and 𝑟 gives

0 =𝑧𝜉𝜉(𝑧2

𝜂 + 𝑟2

𝜂)(𝑟𝜉 − 𝑟𝜂)
− 2𝑧𝜉𝜂(𝑧𝜉𝑧𝜂 + 𝑟𝜉𝑟𝜂)(𝑟𝜉 − 𝑟𝜂)
+ 𝑧𝜂𝜂(𝑧2

𝜉 + 𝑟2

𝜉)(𝑟𝜉 − 𝑟𝜂)

− 𝐽

𝑟
𝑧𝜉(𝑧𝜂)(𝑟𝜉 − 𝑟𝜂)

(1.412a)

0 = − 𝑟𝜉𝜉(𝑧2

𝜂 + 𝑟2

𝜂)(𝑧𝜉 − 𝑧𝜂)
+ 2𝑟𝜉𝜂(𝑧𝜉𝑧𝜂 + 𝑟𝜉𝑟𝜂)(𝑧𝜉 − 𝑧𝜂)
− 𝑟𝜂𝜂(𝑧2

𝜉 + 𝑟2

𝜉)(𝑧𝜉 − 𝑧𝜂)

+ 𝐽

𝑟
𝑧𝜉(𝑟𝜂)(𝑧𝜉 − 𝑧𝜂).

(1.412b)

Dividing out common terms leaves

0 =𝑧𝜉𝜉(𝑧2

𝜂 + 𝑟2

𝜂)
− 2𝑧𝜉𝜂(𝑧𝜉𝑧𝜂 + 𝑟𝜉𝑟𝜂)
+ 𝑧𝜂𝜂(𝑧2

𝜉 + 𝑟2

𝜉)

− 𝐽

𝑟
𝑧𝜉(𝑧𝜂)

(1.413a)

0 = − 𝑟𝜉𝜉(𝑧2

𝜂 + 𝑟2

𝜂)
+ 2𝑟𝜉𝜂(𝑧𝜉𝑧𝜂 + 𝑟𝜉𝑟𝜂)
− 𝑟𝜂𝜂(𝑧2

𝜉 + 𝑟2

𝜉)

+ 𝐽

𝑟
𝑧𝜉(𝑟𝜂).

(1.413b)

After final rearranging, we are left with
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𝑧(𝜉, 𝜂) ≡ 𝛼𝑧𝜉𝜉 − 2𝛽𝑧𝜉𝜂 + 𝛾𝑧𝜂𝜂 =
𝐽

𝑟
𝑧𝜉𝑧𝜂

𝑟(𝜉, 𝜂) ≡ 𝛼𝑟𝜉𝜉 − 2𝛽𝑟𝜉𝜂 + 𝛾𝑟𝜂𝜂 =
𝐽

𝑟
𝑧𝜉𝑟𝜂 ,

(1.414a)

(1.414b)

where again (repeated for convenience),

𝛼 = 𝑧2

𝜂 + 𝑟2

𝜂 (1.415a)

𝛽 = 𝑧𝜉𝑧𝜂 + 𝑟𝜉𝑟𝜂 (1.415b)

𝛾 = 𝑧2

𝜉 + 𝑟2

𝜉 (1.415c)

𝐽 = 𝑧𝜉𝑟𝜂 − 𝑧𝜂𝑟𝜉 . (1.415d)
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